scholarly journals Functional Network Community Detection Can Disaggregate and Filter Multiple Underlying Pathways in Enrichment Analyses

2017 ◽  
Author(s):  
Lia X. Harrington ◽  
Gregory P. Way ◽  
Jennifer A. Doherty ◽  
Casey S. Greene

Differential expression experiments or other analyses often end in a list of genes. Pathway enrichment analysis is one method to discern important biological signals and patterns from noisy expression data. However, pathway enrichment analysis may perform suboptimally in situations where there are multiple implicated pathways – such as in the case of genes that define subtypes of complex diseases. Our simulation study shows that in this setting, standard overrepresentation analysis identifies many false positive pathways along with the true positives. These false positives hamper investigators’ attempts to glean biological insights from enrichment analysis. We develop and evaluate an approach that combines community detection over functional networks with pathway enrichment to reduce false positives. Our simulation study demonstrates that a large reduction in false positives can be obtained with a small decrease in power. Though we hypothesized that multiple communities might underlie previously described subtypes of high-grade serous ovarian cancer and applied this approach, our results do not support this hypothesis. In summary, applying community detection before enrichment analysis may ease interpretation for complex gene sets that represent multiple distinct pathways.

2019 ◽  
Author(s):  
JM Robinson

AbstractThis brief report details results from a comparative analysis of Nanostring expression data between cell lines HEPG2, Caco-2, HT-29, and colon fibroblasts. Raw and normalized data are available publicly in the NCBI GEO/Bioproject databases. Results identify cell-line specific variations in gene expression relevant to intestinal epithelial function.


2020 ◽  
Vol 36 (10) ◽  
pp. 3283-3285
Author(s):  
Jinhwan Kim ◽  
Sora Yoon ◽  
Dougu Nam

Abstract Summary We present an R-Shiny package, netGO, for novel network-integrated pathway enrichment analysis. The conventional Fisher’s exact test (FET) considers the extent of overlap between target genes and pathway gene-sets, while recent network-based analysis tools consider only network interactions between the two. netGO implements an intuitive framework to integrate both the overlap and networks into a single score, and adaptively resamples genes based on network degrees to assess the pathway enrichment. In benchmark tests for gene expression and genome-wide association study (GWAS) data, netGO captured the relevant gene-sets better than existing tools, especially when analyzing a small number of genes. Specifically, netGO provides user-interactive visualization of the target genes, enriched gene-set and their network interactions for both netGO and FET results for further analysis. For this visualization, we also developed a standalone R-Shiny package shinyCyJS to connect R-shiny and the JavaScript version of cytoscape. Availability and implementation netGO R-Shiny package is freely available from github, https://github.com/unistbig/netGO. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Author(s):  
Samaneh Maleknia ◽  
Ali Sharifi-Zarchi ◽  
Vahid Rezaei Tabar ◽  
Mohsen Namazi ◽  
Kaveh Kavousi

AbstractMotivationOne of the most popular techniques in biological studies for analyzing high throughput data is pathway enrichment analysis (PEA). Many researchers apply the existing methods without considering the topology of pathways or at least they have overlooked a significant part of the structure, which may reduce the accuracy and generalizability of the results. Developing a new approach while considering gene expression data and topological features like causal relations regarding edge directions will help the investigators to achieve more accurate results.ResultsWe proposed a new pathway enrichment analysis based on Bayesian network (BNrich) as an approach in PEA. To this end, the cycles were eliminated in 187 KEGG human signaling pathways concerning intuitive biological rules and the Bayesian network structures were constructed. The constructed networks were simplified by the Least Absolute Shrinkage Selector Operator (LASSO), and their parameters were estimated using the gene expression data. We finally prioritize the impacted pathways by Fisher’s Exact Test on significant parameters. Our method integrates both edge and node related parameters to enrich modules in the affected signaling pathway network. In order to evaluate the proposed method, consistency, discrimination, false positive rate and empirical P-value criteria were calculated, and the results are compared to well-known enrichment methods such as signaling pathway impact analysis (SPIA), bi-level meta-analysis (BLMA) and topology-based pathway enrichment analysis (TPEA).AvailabilityThe R package is available on carn.


2018 ◽  
Author(s):  
Ege Ulgen ◽  
Ozan Ozisik ◽  
Osman Ugur Sezerman

AbstractSummaryPathfindR is a tool for pathway enrichment analysis utilizing active subnetworks. It identifies gene sets that form active subnetworks in a protein-protein interaction network using a list of genes provided by the user. It then performs pathway enrichment analyses on the identified gene sets. Further, using the R package pathview, it maps the user data on the enriched pathways and renders pathway diagrams with the mapped genes. Because many of the enriched pathways are usually biologically related, pathfindR also offers functionality to cluster these pathways and identify representative pathways in the clusters. PathfindR is built as a stand-alone package but it can easily be integrated with other tools, such as differential expression/methylation analysis tools, for building fully automated pipelines. In this article, an overview of pathfindR is provided and an example application on a rheumatoid arthritis dataset is presented and discussed.AvailabilityThe package is freely available under MIT license at: https://github.com/egeulgen/pathfindR


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Miguel Castresana-Aguirre ◽  
Erik L. L. Sonnhammer

Abstract Pathway enrichment analysis is the most common approach for understanding which biological processes are affected by altered gene activities under specific conditions. However, it has been challenging to find a method that efficiently avoids false positives while keeping a high sensitivity. We here present a new network-based method ANUBIX based on sampling random gene sets against intact pathway. Benchmarking shows that ANUBIX is considerably more accurate than previous network crosstalk based methods, which have the drawback of modelling pathways as random gene sets. We demonstrate that ANUBIX does not have a bias for finding certain pathways, which previous methods do, and show that ANUBIX finds biologically relevant pathways that are missed by other methods.


2013 ◽  
Vol 40 (12) ◽  
pp. 1256
Author(s):  
XiaoDong JIA ◽  
XiuJie CHEN ◽  
Xin WU ◽  
JianKai XU ◽  
FuJian TAN ◽  
...  

2019 ◽  
Vol 22 (6) ◽  
pp. 411-420 ◽  
Author(s):  
Xian-Jun Wu ◽  
Xin-Bin Zhou ◽  
Chen Chen ◽  
Wei Mao

Aim and Objective: Cardiovascular disease is a serious threat to human health because of its high mortality and morbidity rates. At present, there is no effective treatment. In Southeast Asia, traditional Chinese medicine is widely used in the treatment of cardiovascular diseases. Quercetin is a flavonoid extract of Ginkgo biloba leaves. Basic experiments and clinical studies have shown that quercetin has a significant effect on the treatment of cardiovascular diseases. However, its precise mechanism is still unclear. Therefore, it is necessary to exploit the network pharmacological potential effects of quercetin on cardiovascular disease. Materials and Methods: In the present study, a novel network pharmacology strategy based on pharmacokinetic filtering, target fishing, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, compound-target-pathway network structured was performed to explore the anti- cardiovascular disease mechanism of quercetin. Results:: The outcomes showed that quercetin possesses favorable pharmacokinetic profiles, which have interactions with 47 cardiovascular disease-related targets and 12 KEGG signaling pathways to provide potential synergistic therapeutic effects. Following the construction of Compound-Target-Pathway (C-T-P) network, and the network topological feature calculation, we obtained top 10 core genes in this network which were AKT1, IL1B, TNF, IL6, JUN, CCL2, FOS, VEGFA, CXCL8, and ICAM1. KEGG pathway enrichment analysis. These indicated that quercetin produced the therapeutic effects against cardiovascular disease by systemically and holistically regulating many signaling pathways, including Fluid shear stress and atherosclerosis, AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, MAPK signaling pathway, IL-17 signaling pathway and PI3K-Akt signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document