scholarly journals pathfindR: An R Package for Pathway Enrichment Analysis Utilizing Active Subnetworks

2018 ◽  
Author(s):  
Ege Ulgen ◽  
Ozan Ozisik ◽  
Osman Ugur Sezerman

AbstractSummaryPathfindR is a tool for pathway enrichment analysis utilizing active subnetworks. It identifies gene sets that form active subnetworks in a protein-protein interaction network using a list of genes provided by the user. It then performs pathway enrichment analyses on the identified gene sets. Further, using the R package pathview, it maps the user data on the enriched pathways and renders pathway diagrams with the mapped genes. Because many of the enriched pathways are usually biologically related, pathfindR also offers functionality to cluster these pathways and identify representative pathways in the clusters. PathfindR is built as a stand-alone package but it can easily be integrated with other tools, such as differential expression/methylation analysis tools, for building fully automated pipelines. In this article, an overview of pathfindR is provided and an example application on a rheumatoid arthritis dataset is presented and discussed.AvailabilityThe package is freely available under MIT license at: https://github.com/egeulgen/pathfindR

2017 ◽  
Vol 71 (4) ◽  
pp. 344-350 ◽  
Author(s):  
Edoardo D’Angelo ◽  
Carlo Zanon ◽  
Francesca Sensi ◽  
Maura Digito ◽  
Massimo Rugge ◽  
...  

AimsCurative surgery remains the primary form of treatment for locally advanced rectal cancer (LARC). Recent data support the use of preoperative chemoradiotherapy (pCRT) to improve the prognosis of LARC with a significant reduction of local relapse and an increase of overall survival. Unfortunately, only 20% of the patients with LARC present complete pathological response after pCRT, whereas in 20%–40%, the response is poor or absent.MethodsWe investigated the expression level of miR-194 in n=38 patients with LARC using our public microRNA (miRNA) expression dataset. miR-194 expression was further validated by real-time quantitative PCR (qRT-PCR) and in situ hybridisation (ISH). Protein–protein interaction network and pathway enrichment analysis were performed on miR-194 targets.Results and discussionUsing biopsy samples collected at diagnosis, mir-194 was significantly upregulated in patients responding to treatment (p value=0.016). The data was confirmed with qRT-PCR (p value=0.0587) and ISH (p value=0.026). Protein–protein interaction network and pathway enrichment analysis reveal a possible mechanism of susceptibility to pCRT involving Wnt pathway via its downstream mediator TRAF6. Finally, we interrogated the Comparative Toxicogenomics Database database in order to identify those chemical compounds able to mimic the biological effects of miR-194 as new possible therapeutic option in LARC treatment. The present study combining miRNA expression profiling with integrative computational biology identified miR-194 as predictive biomarker of response to pCRT. Using known and predicted drug mechanism of action, we then identified possible chemical compounds for further in vitro validation.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Sha Di ◽  
Lin Han ◽  
Qing Wang ◽  
Xinkui Liu ◽  
Yingying Yang ◽  
...  

Shen-Qi-Di-Huang decoction (SQDHD), a well-known herbal formula from China, has been widely used in the treatment of diabetic nephropathy (DN). However, the pharmacological mechanisms of SQDHD have not been entirely elucidated. At first, we conducted a comprehensive literature search to identify the active constituents of SQDHD, determined their corresponding targets, and obtained known DN targets from several databases. A protein-protein interaction network was then built to explore the complex relations between SQDHD targets and those known to treat DN. Following the topological feature screening of each node in the network, 400 major targets of SQDHD were obtained. The pathway enrichment analysis results acquired from DAVID showed that the significant bioprocesses and pathways include oxidative stress, response to glucose, regulation of blood pressure, regulation of cell proliferation, cytokine-mediated signaling pathway, and the apoptotic signaling pathway. More interestingly, five key targets of SQDHD, named AKT1, AR, CTNNB1, EGFR, and ESR1, were significant in the regulation of the above bioprocesses and pathways. This study partially verified and predicted the pharmacological and molecular mechanisms of SQDHD on DN from a holistic perspective. This has laid the foundation for further experimental research and has expanded the rational application of SQDHD in clinical practice.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Suthanthiram Backiyarani ◽  
Rajendran Sasikala ◽  
Simeon Sharmiladevi ◽  
Subbaraya Uma

AbstractBanana, one of the most important staple fruit among global consumers is highly sterile owing to natural parthenocarpy. Identification of genetic factors responsible for parthenocarpy would facilitate the conventional breeders to improve the seeded accessions. We have constructed Protein–protein interaction (PPI) network through mining differentially expressed genes and the genes used for transgenic studies with respect to parthenocarpy. Based on the topological and pathway enrichment analysis of proteins in PPI network, 12 candidate genes were shortlisted. By further validating these candidate genes in seeded and seedless accession of Musa spp. we put forward MaAGL8, MaMADS16, MaGH3.8, MaMADS29, MaRGA1, MaEXPA1, MaGID1C, MaHK2 and MaBAM1 as possible target genes in the study of natural parthenocarpy. In contrary, expression profile of MaACLB-2 and MaZEP is anticipated to highlight the difference in artificially induced and natural parthenocarpy. By exploring the PPI of validated genes from the network, we postulated a putative pathway that bring insights into the significance of cytokinin mediated CLAVATA(CLV)–WUSHEL(WUS) signaling pathway in addition to gibberellin mediated auxin signaling in parthenocarpy. Our analysis is the first attempt to identify candidate genes and to hypothesize a putative mechanism that bridges the gaps in understanding natural parthenocarpy through PPI network.


2021 ◽  
Author(s):  
Xiting Wang ◽  
Tao Lu

Abstract Due to the severity of the COVID-19 epidemic, to identify a proper treatment for COVID-19 is of great significance. Traditional Chinese Medicine (TCM) has shown its great potential in the prevention and treatment of COVID-19. One of TCM decoction, Lianhua Qingwen decoction displayed promising treating efficacy. Nevertheless, the underlying molecular mechanism has not been explored for further development and treatment. Through systems pharmacology and network pharmacology approaches, we explored the potential mechanisms of Lianhua Qingwen treating COVID-19 and acting ingredients of Lianhua Qingwen decoction for COVID-19 treatment. Through this way, we generated an ingredients-targets database. We also used molecular docking to screen possible active ingredients. Also, we applied the protein-protein interaction network and detection algorithm to identify relevant protein groupings of Lianhua Qingwen. Totally, 605 ingredients and 1,089 targets were obtained. Molecular Docking analyses revealed that 35 components may be the promising acting ingredients, 7 of which were underlined according to the comprehensive analysis. Our enrichment analysis of the 7 highlighted ingredients showed relevant significant pathways that could be highly related to their potential mechanisms, e.g. oxidative stress response, inflammation, and blood circulation. In summary, this study suggests the promising mechanism of the Lianhua Qingwen decoction for COVID-19 treatment. Further experimental and clinical verifications are still needed.


2020 ◽  
Author(s):  
Kumari Sonal Choudhary ◽  
Eoin Fahy ◽  
Kevin Coakley ◽  
Manish Sud ◽  
Mano R Maurya ◽  
...  

ABSTRACTWith the advent of high throughput mass spectrometric methods, metabolomics has emerged as an essential area of research in biomedicine with the potential to provide deep biological insights into normal and diseased functions in physiology. However, to achieve the potential offered by metabolomics measures, there is a need for biologist-friendly integrative analysis tools that can transform data into mechanisms that relate to phenotypes. Here, we describe MetENP, an R package, and a user-friendly web application deployed at the Metabolomics Workbench site extending the metabolomics enrichment analysis to include species-specific pathway analysis, pathway enrichment scores, gene-enzyme information, and enzymatic activities of the significantly altered metabolites. MetENP provides a highly customizable workflow through various user-specified options and includes support for all metabolite species with available KEGG pathways. MetENPweb is a web application for calculating metabolite and pathway enrichment analysis.Availability and ImplementationThe MetENP package is freely available from Metabolomics Workbench GitHub: (https://github.com/metabolomicsworkbench/MetENP), the web application, is freely available at (https://www.metabolomicsworkbench.org/data/analyze.php)


Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3769
Author(s):  
Liping Zhu ◽  
Bowen Zheng ◽  
Wangyang Song ◽  
Chengcheng Tao ◽  
Xiang Jin ◽  
...  

Fuzzless-lintless mutant (fl) ovules of upland cotton have been used to investigate cotton fiber development for decades. However, the molecular differences of green tissues between fl and wild-type (WT) cotton were barely reported. Here, we found that gossypol content, the most important secondary metabolite of cotton leaves, was higher in Gossypium hirsutum L. cv Xuzhou-142 (Xu142) WT than in fl. Then, we performed comparative proteomic analysis of the leaves from Xu142 WT and its fl. A total of 4506 proteins were identified, of which 103 and 164 appeared to be WT- and fl-specific, respectively. In the 4239 common-expressed proteins, 80 and 74 were preferentially accumulated in WT and fl, respectively. Pathway enrichment analysis and protein–protein interaction network analysis of both variety-specific and differential abundant proteins showed that secondary metabolism and chloroplast-related pathways were significantly enriched. Quantitative real-time PCR confirmed that the expression levels of 12 out of 16 selected genes from representative pathways were consistent with their protein accumulation patterns. Further analyses showed that the content of chlorophyll a in WT, but not chlorophyll b, was significantly increased compared to fl. This work provides the leaf proteome profiles of Xu142 and its fl mutant, indicating the necessity of further investigation of molecular differences between WT and fl leaves.


2019 ◽  
Author(s):  
Yunze Liu ◽  
Xiaojie Sun ◽  
Aijun Qu

As an evolutionarily conserved mechanism, developmental neuronal remodeling is needed for the proper wiring of the nervous system and is critical for understanding the neurodevelopment mechanisms. Previous studies have shown that during metamorphosis lots of Drosophila melanogaster mushroom body neurons experience stereotypic remodeling. However, the related regulators and downstream executors of pathways are yet unclear, especially studies of transcriptional gene co-expression analysis of nervous systems remain insufficient. In this study, we develop a weighted gene co-expression network (WGCNA) to classify gene modules associated with neuronal remodeling. Moreover, functional and pathway enrichment analysis with protein-protein network construction is applied to detect high informative hub genes in the targeted gene module. Thus, we select a total of five hub genes that play critical roles in neuronal remodeling and identify them with functional enrichment analysis and protein-protein interaction network. Overall, this study provides insight into the underlying molecular mechanism of developmental neuronal remodeling in Drosophila melanogaster.


2020 ◽  
Author(s):  
Le Yu ◽  
Kangyao Yuan ◽  
Jian Zhang ◽  
Jingya Zhao ◽  
Shuchen Pei

Abstract In this study, the bioactive components and predictive targets of Sophorae Flavescentis Radix were investigated by network pharmacology analysis, so as to further elucidate its potential biological mechanism in treating lung cancer. The targets corresponding to lung cancer were obtained by OMIM and Genecards. By intersecting with the targets of Sophorae Flavescentis Radix and lung cancer, the Sophorae Flavescentis Radix-lung cancer targets were obtained. Protein-protein interaction network was constructed by an online database STRING and hub genes were screened by Cytoscape 3.7.0 software. ClusterProfiler package was used to analyze Gene ontology (GO) and KEGG enrichment of the targets in R. A total of 45 bioactive components were screened from Sophorae Flavescentis Radix, corresponding to 482 Sophorae Flavescentis Radix targets and 25019 lung cancer targets. According to the GO and KEGG enrichment analysis, Sophorae Flavescentis Radix played a therapeutic role in treating lung cancer via proteoglycans lung cancer, human cytomegalovirus infection, microRNAs in cancer, PI3K-Akt signaling pathway, etc. Seven hub genes (IL6, CASP3, EGFR, VEGFA, MYC, CCND1 and ESR1) were screened by degree algorithm. In a word, the results of this study may provide novel insights into the mechanisms of Sophorae Flavescentis Radix in treatment of lung cancer.


Sign in / Sign up

Export Citation Format

Share Document