scholarly journals OptoGap: an optogenetics-enabled assay for quantification of cell-cell coupling in multicellular cardiac tissue

2017 ◽  
Author(s):  
Jinzhu Yu ◽  
Patrick M. Boyle ◽  
Aleksandra Klimas ◽  
John C. Williams ◽  
Natalia Trayanova ◽  
...  

AbstractIntercellular electrical coupling is an essential means of communication between cells. It is important to obtain quantitative knowledge of such coupling between cardiomyocytes and nonexcitable cells when, for example, pathological electrical coupling between myofibroblasts and cardiomyocytes yields increased arrhythmia risk or during the integration of donor (e.g. cardiac progenitor) cells with native cardiomyocytes in cell-therapy approaches. Currently, there is no direct method for assessing heterocellular coupling within multicellular tissue. Here we demonstrate experimentally and computationally a new contactless assay for electrical coupling, OptoGap, based on selective illumination of inexcitable cells that express optogenetic actuators and optical sensing of the response of coupled excitable cells, e.g. cardiomyocytes, that are light-insensitive. Cell-cell coupling is quantified by the energy required to elicit an action potential via junctional current from the light-stimulated cell(s). The proposed technique is experimentally validated against the standard indirect approach, GapFRAP, using light-sensitive cardiac fibroblasts and non-transformed cardiomyocytes in a two-dimensional setting. It’s potential applicability to the complex three-dimensional setting of the native heart is corroborated by computational modeling and proper calibration.Intercellular coupling is a fundamental form of communication between cells, essential for the synchronization of physiological processes in different organs. Pathologically altered coupling or the emergence of de novo coupling between native and donor cells are problems of interest in many cardiac applications, e.g. during cell delivery and cell integration for cardiac repair therapy1,2. In particular, interactions between cardiomyocytes and fibroblasts are of interest, especially the pro-arrhythmic increase in coupling as the latter transition to myofibroblasts3-6.Electrical coupling in cardiac tissue is mediated primarily by low-resistance paths formed by gap-junctional proteins (connexins), that can link cardiomyocytes (CMs) to each other and to non-cardiomyocytes (nCMs), such as fibroblasts. Qualitative and quantitative methods, e.g. immunofluorescence, messenger RNA and Western blots, are often used to assay connexin expression levels as a surrogate measure of coupling, but they do not provide functional information. A method for direct quantification of cell-cell coupling within the multicellular tissue context is highly desirable.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Patrick M. Boyle ◽  
Jinzhu Yu ◽  
Aleksandra Klimas ◽  
John C. Williams ◽  
Natalia A. Trayanova ◽  
...  

AbstractIntercellular electrical coupling is an essential means of communication between cells. It is important to obtain quantitative knowledge of such coupling between cardiomyocytes and non-excitable cells when, for example, pathological electrical coupling between myofibroblasts and cardiomyocytes yields increased arrhythmia risk or during the integration of donor (e.g., cardiac progenitor) cells with native cardiomyocytes in cell-therapy approaches. Currently, there is no direct method for assessing heterocellular coupling within multicellular tissue. Here we demonstrate experimentally and computationally a new contactless assay for electrical coupling, OptoGap, based on selective illumination of inexcitable cells that express optogenetic actuators and optical sensing of the response of coupled excitable cells (e.g., cardiomyocytes) that are light-insensitive. Cell–cell coupling is quantified by the energy required to elicit an action potential via junctional current from the light-stimulated cell(s). The proposed technique is experimentally validated against the standard indirect approach, GapFRAP, using light-sensitive cardiac fibroblasts and non-transformed cardiomyocytes in a two-dimensional setting. Its potential applicability to the complex three-dimensional setting of the native heart is corroborated by computational modelling and proper calibration. Lastly, the sensitivity of OptoGap to intrinsic cell-scale excitability is robustly characterized via computational analysis.


2017 ◽  
Vol 313 (4) ◽  
pp. H810-H827 ◽  
Author(s):  
C. M. Kofron ◽  
T. Y. Kim ◽  
M. E. King ◽  
A. Xie ◽  
F. Feng ◽  
...  

Cardiac fibroblasts (CFs) are known to regulate cardiomyocyte (CM) function in vivo and in two-dimensional in vitro cultures. This study examined the effect of CF activation on the regulation of CM electrical activity in a three-dimensional (3-D) microtissue environment. Using a scaffold-free 3-D platform with interspersed neonatal rat ventricular CMs and CFs, Gq-mediated signaling was selectively enhanced in CFs by Gαq adenoviral infection before coseeding with CMs in nonadhesive hydrogels. After 3 days, the microtissues were analyzed by signaling assay, histological staining, quantitative PCR, Western blots, optical mapping with voltage- or Ca2+-sensitive dyes, and microelectrode recordings of CF resting membrane potential (RMPCF). Enhanced Gq signaling in CFs increased microtissue size and profibrotic and prohypertrophic markers. Expression of constitutively active Gαq in CFs prolonged CM action potential duration (by 33%) and rise time (by 31%), prolonged Ca2+ transient duration (by 98%) and rise time (by 65%), and caused abnormal electrical activity based on depolarization-induced automaticity. Constitutive Gq activation in CFs also depolarized RMPCF from –33 to −20 mV and increased connexin 43 and connexin 45 expression. Computational modeling confers that elevated RMPCF and increased cell-cell coupling between CMs and CFs in a 3-D environment could lead to automaticity. In conclusion, our data demonstrate that CF activation alone is capable of altering action potential and Ca2+ transient characteristics of CMs, leading to proarrhythmic electrical activity. Our results also emphasize the importance of a 3-D environment where cell-cell interactions are prevalent, underscoring that CF activation in 3-D tissue plays a significant role in modulating CM electrophysiology and arrhythmias. NEW & NOTEWORTHY In a three-dimensional microtissue model, which lowers baseline activation of cardiac fibroblasts but enables cell-cell, paracrine, and cell-extracellular matrix interactions, we demonstrate that selective cardiac fibroblast activation by enhanced Gq signaling, a pathophysiological trigger in the diseased heart, modulates cardiomyocyte electrical activity, leading to proarrhythmogenic automaticity.


2009 ◽  
pp. 211-217 ◽  
Author(s):  
M Mitašíková ◽  
H Lin ◽  
T Soukup ◽  
I Imanaga ◽  
N Tribulová

We have examined the changes of intercellular electrical coupling protein connexin-43 (Cx43) and of PKC-ε in heart atria of diabetic rats and/or after the treatment with triiodothyronine (T3). Diabetes was induced in Wistar-Kyoto rats by streptozotocin (50 mg/kg, i.v.) and atria were examined after 5 (acute stage) and 10 (chronic stage) weeks. T3 (10 μg/100 g/day) was applied via a gastric tube for the last 10 days prior to the end of the experiments to non-diabetic and to the half of diabetic rats. Expression and phosphorylated status of Cx43, as well as expression of PKC-ε, were analyzed by Western blots using mouse monoclonal anti-Cx43 and rabbit polyclonal anti-PKC-ε antibodies. We found that the Cx43 expression was significantly increased after the treatment with T3 and in the acute diabetes. Both in diabetes and after T3 treatment the phosphorylation of Cx43 isoforms was markedly suppressed compared to the nondiabetic and T3-untreated controls. Such a down-regulation was less pronounced in diabetic rats after the T3-treatment. The expression of atrial PKC-ε was increased in diabetic rats. This increase was suppressed after T3 administration and the expression was decreased in T3-treated non-diabetic rats. We suggest that the reduced Cx43 phosphorylation in diabetic and hyperthyroid rats can deteriorate a cell-to-cell coupling and consequently facilitate a development of atrial tachyarrhythmia in diabetic or hyperthyroid animals.


2021 ◽  
pp. 247255522098504
Author(s):  
Jeffrey R. Simard ◽  
Linda Lee ◽  
Ellen Vieux ◽  
Reina Improgo ◽  
Trang Tieu ◽  
...  

The aberrant regulation of protein expression and function can drastically alter cellular physiology and lead to numerous pathophysiological conditions such as cancer, inflammatory diseases, and neurodegeneration. The steady-state expression levels of endogenous proteins are controlled by a balance of de novo synthesis rates and degradation rates. Moreover, the levels of activated proteins in signaling cascades can be further modulated by a variety of posttranslational modifications and protein–protein interactions. The field of targeted protein degradation is an emerging area for drug discovery in which small molecules are used to recruit E3 ubiquitin ligases to catalyze the ubiquitination and subsequent degradation of disease-causing target proteins by the proteasome in both a dose- and time-dependent manner. Traditional approaches for quantifying protein level changes in cells, such as Western blots, are typically low throughput with limited quantification, making it hard to drive the rapid development of therapeutics that induce selective, rapid, and sustained protein degradation. In the last decade, a number of techniques and technologies have emerged that have helped to accelerate targeted protein degradation drug discovery efforts, including the use of fluorescent protein fusions and reporter tags, flow cytometry, time-resolved fluorescence energy transfer (TR-FRET), and split luciferase systems. Here we discuss the advantages and disadvantages associated with these technologies and their application to the development and optimization of degraders as therapeutics.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
James W Smyth ◽  
Jose M Sanchez ◽  
Samy Lamouille ◽  
Ting-Ting Hong ◽  
Jacob M Vogan ◽  
...  

During each heartbeat, robust cell-cell electrical coupling via connexin 43 (Cx43) gap junctions allows billions of individual cardiomyocytes to contract in synchrony. Cx43 turns over rapidly, and altered Cx43 trafficking during disease contributes to the arrhythmias of sudden cardiac death. The overall phosphorylation status of the Cx43 protein is known to regulate gap junction coupling, but the role of many residue specific phosphorylation events remains unknown. One such residue, Ser373, forms a mode-1 14-3-3 binding motif upon phosphorylation. Given that 14-3-3 proteins are known to regulate protein trafficking, we hypothesized a role for Cx43 Ser373 phosphorylation in regulation of Cx43 gap junction coupling. Using Langendorff-perfused mouse hearts we find robust phosphorylation of Cx43 at Ser373 and Ser368 after 30 min of no-flow ischemia. In human cell lines, a S373A mutation ablated Cx43/14-3-3 complexing and 35 S pulse-chase revealed Cx43 S373A also experiences a longer half-life than wild-type Cx43. Previous reports have implicated phosphorylation of Cx43 Ser368 in PKC mediated Cx43 internalization. We find that upon activation of PKC, the Cx43 S373A mutant undergoes lower and more transient levels of phosphorylation at Ser368 than wild-type Cx43. Consistent with these data, siRNA-mediated ablation of 14-3-3 expression results in enlargement of gap junction plaque formation at cell-cell borders. In conclusion, we propose that phosphorylation of Cx43 Ser373 results in 14-3-3 binding which promotes and maintains phosphorylation of Cx43 Ser368 and the subsequent internalization of gap junction channels. These results identify for the first time a specific role for 14-3-3 proteins in regulation of Cx43 internalization during acute ischemia and contribute to the development of therapies aimed at preserving or enhancing gap junction coupling in the heart.


2018 ◽  
Vol 38 (3) ◽  
pp. 371-377
Author(s):  
SD Nusair ◽  
AN Joukhan ◽  
AH Bani Rashaid ◽  
AM Rababa’h

Methomyl toxicity has been reported as a cause of several accidental and suicidal fatalities. The study is evaluating the effect of lethal methomyl toxicity on fortilin and S100A1 in serum and cardiac tissues. Adult 96 female Sprague-Dawley rats were divided equally into a control (euthanized by cervical dislocation) and a study group (overdosed with methomyl). The levels of fortilin and S100A1 in serum were measured antemortem (to establish the basal levels in serum) and postmortem (to evaluate changes after methomyl exposure) using enzyme-linked immunoassay. S100A1 was immunostained in sections from cardiac tissues. Both proteins in the control were not significantly different ( p > 0.05) compared with the antemortem levels. On the contrast, both biomarkers levels in the intoxicated group were remarkably higher ( p < 0.001) than the control and the antemortem levels. Ventricular tissues from the intoxicated rats presented depleted S100A1 immunostain in cardiomyocytes localized mainly in the epicardium with deeply stained adjacent cardiac fibroblasts. The cardiomyocytes were damaged with a prominent loss of striations compared to normal cardiac tissues from the control. The present outcomes explain to a certain degree the potential toxic effect of methomyl poisoning on the cardiac tissue. Both proteins could be added to the currently available battery of markers for assessing methomyl toxicity.


1992 ◽  
Vol 70 (4) ◽  
pp. 481-490 ◽  
Author(s):  
R. E. Garfield ◽  
G. Thilander ◽  
M. G. Blennerhassett ◽  
N. Sakai

Earlier, it was questioned whether gap junctions (GJs) were necessary for cell–cell communication in smooth muscle, and GJs were not seen in some smooth muscles. We reexamined this question in the myometrium and in intestinal smooth muscle, in light of current knowledge of the presence and function of GJs. In the uterus, numerous studies show that an increase in GJ number is associated with the onset of delivery and is required for effective parturition. In all cases, this increase in GJ number and the changes in uterine contractility were correlated with increased electrical and metabolic coupling. Evidence for the much smaller, but detectable, degree of electrical coupling in the preterm uterus is explained by the small (but again detectable) number of GJs present. In the intestine, GJs are readily detected in the circular muscle layer but have not been described in the adjacent longitudinal layer. While our immunohistochemical studies failed to detect GJs in the longitudinal layer, this may not be adequate to prove their absence. Therefore, current knowledge of GJ number and function is adequate to explain cell–cell coupling in the uterus. Although it remains uncertain whether GJs are absent from the longitudinal muscle of the intestine, there is no definitive evidence that cell–cell coupling can occur by means other than GJs.Key words: gap junctions, myometrium, connexins, smooth muscle, cell communication.


Sign in / Sign up

Export Citation Format

Share Document