scholarly journals Regulation of mesenchymal stem cell function by TGFβ-1 on mast cell extracellular vesicles – role of endosomal retention

2017 ◽  
Author(s):  
Yanan Yin ◽  
Ganesh Vilas Shelke ◽  
Su Chul Jang ◽  
Cecilia Lässer ◽  
Stefan Wennmalm ◽  
...  

AbstractExtracellular vesicles (EVs) convey biological messages between cells, either by surface-to-surface interaction, or by shuttling of bioactive molecules to a recipient cell cytoplasm. Here we show that EVs released by human primary mast cells or transformed human mast cells (HMC1), carry TGFβ-1 on their surface. EV-associated TGFβ-1 enhance the migratory activity of human mesenchymal stem cells (MSCs) compared to free TGFβ-1, as both knockdown of TGFβ, or a TGFβ-antibody, attenuate the effect. The MSCs respond by increasing matrix metalloproteinase-2 and −9 (MMP) activity. Further, EVs given to MSCs are retained in the endosomal compartments at a time of biological function, prolonging EV-associated TGFβ-1 signaling vs free TGFβ-1. When exposed to EVs, MSCs home more toward allergen-exposed lung in a mouse allergen model, resulting in attenuated allergic inflammation. Our results show that mast cell-EVs are decorated with TGFb-1, are retained in endosomes, which influences both MSC phenotype and function.

2021 ◽  
Vol 22 (17) ◽  
pp. 9176
Author(s):  
Irit Shefler ◽  
Pazit Salamon ◽  
Yoseph A. Mekori

Mast cells are major effector cells in eliciting allergic responses. They also play a significant role in establishing innate and adaptive immune responses, as well as in modulating tumor growth. Mast cells can be activated upon engagement of the high-affinity receptor FcεRI with specific IgE to multivalent antigens or in response to several FcεRI-independent mechanisms. Upon stimulation, mast cells secrete various preformed and newly synthesized mediators. Emerging evidence indicates their ability to be a rich source of secreted extracellular vesicles (EVs), including exosomes and microvesicles, which convey biological functions. Mast cell-derived EVs can interact with and affect other cells located nearby or at distant sites and modulate inflammation, allergic response, and tumor progression. Mast cells are also affected by EVs derived from other cells in the immune system or in the tumor microenvironment, which may activate mast cells to release different mediators. In this review, we summarize the latest data regarding the ability of mast cells to release or respond to EVs and their role in allergic responses, inflammation, and tumor progression. Understanding the release, composition, and uptake of EVs by cells located near to or at sites distant from mast cells in a variety of clinical conditions, such as allergic inflammation, mastocytosis, and lung cancer will contribute to developing novel therapeutic approaches.


2000 ◽  
Vol 113 (18) ◽  
pp. 3289-3298 ◽  
Author(s):  
A. Dragonetti ◽  
M. Baldassarre ◽  
R. Castino ◽  
M. Demoz ◽  
A. Luini ◽  
...  

Basophils and mast cells contain a peculiar class of inflammatory granules that discharge their content upon antigen-mediated crosslinking of IgE-membrane receptors. The pathways for granule biogenesis and exocytosis in these cells are still largely obscure. In this study we employed the rat basophilic leukemia (RBL)/mast cell line to verify the hypothesis that inflammatory granules share common bioactive molecules and functional properties with lysosomes. We demonstrate that inflammatory granules, as identified by the monoclonal 5G10 antibody (which recognises an integral membrane protein) or by Toluidine Blue staining, have an intralumenal acidic pH, possess lysosomal enzymes and are accessible by fluid-phase and membrane endocytosis markers. In addition, we studied the targeting, subcellular localisation and regulated secretion of the lysosomal aspartic protease cathepsin D (CD) as affected by IgE receptor stimulation in order to obtain information on the pathways for granule biogenesis and exocytosis. Stimulation with DNP-BSA of specific IgE-primed RBL cells led to a prompt release of processed forms of CD, along with other mature lysosomal hydrolases. This release could be prevented by addition of EGTA, indicating that it was dependent on extracellular calcium influx. Antigen stimulation also induced exocytosis of immature CD forms accumulated by ammonium chloride, suggesting the existence of an intermediate station in the pathway for granule biogenesis still sensitive to regulated exocytosis. The targeting of molecules to secretory granules may occur via either a mannose-6-phosphate-dependent or mannose-6-phosphate-independent pathway. We conclude that endosomes and lysosomes in basophils/mast cells can act as regulated secretory granules or actually identify with them.


Author(s):  
Goutham Pattabiraman ◽  
Ashlee J Bell-Cohn ◽  
Stephen F. Murphy ◽  
Daniel J Mazur ◽  
Anthony J Schaeffer ◽  
...  

Intraurethral inoculation of mice with uropathogenic E. coli (CP1) results in prostate inflammation, fibrosis, and urinary dysfunction, recapitulating some but not all of the pathognomonic clinical features associated with benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS). In both patients with LUTS and in CP1-infected mice, we observed increased numbers and activation of mast cells and elevated levels of prostate fibrosis. Therapeutic inhibition of mast cells using a combination of mast cell stabilizer (MCS), cromolyn sodium, and the histamine 1 receptor antagonist (H1RA), cetirizine di-hydrochloride, in the mouse model resulted in reduced mast cell activation in the prostate and significant alleviation of urinary dysfunction. Treated mice showed reduced prostate fibrosis, less infiltration of immune cells, and decreased inflammation. In addition, as opposed to symptomatic CP1-infected mice, treated mice showed reduced myosin light chain (MLC)-2 phosphorylation, a marker of prostate smooth muscle contraction. These results show that mast cells play a critical role in the pathophysiology of urinary dysfunction and may be an important therapeutic target for men with BPH/LUTS.


2018 ◽  
Author(s):  
Elin Rönnberg ◽  
Avan Ghaib ◽  
Carlos Ceriol ◽  
Mattias Enoksson ◽  
Michel Arock ◽  
...  

AbstractBackgroundEpithelial cytokines, including IL-33 and TSLP, have attracted interest because of their roles in chronic allergic inflammation-related conditions such as asthma. Mast cells are one of the major targets of IL-33, to which they respond by secreting cytokines. Most studies performed thus far have investigated the acute effects of IL-33 on mast cells.ObjectiveThe objective of this study is to investigate how acute versus prolonged exposure of human mast cells to IL-33 and TSLP affects mediator synthesis and IgE-mediated activation.MethodsHuman lung mast cells (HLMCs), cord blood-derived mast cells (CBMCs), and the ROSA mast cell line were used for this study. Surface receptor expression and the levels of mediators were measured after treatment with IL-33 and/or TSLP.ResultsIL-33 induced the acute release of cytokines. Prolonged exposure to IL-33 increased while TSLP reduced intracellular levels of tryptase. Acute IL-33 treatment strongly potentiated IgE-mediated activation. In contrast, four days of exposure to IL-33 decreased IgE-mediated activation, an effect that was accompanied by a reduction in FcεRI expression.Conclusion & Clinical RelevanceWe show that IL-33 plays dual roles for mast cell functions. The acute effect includes cytokine release and the potentiation of IgE-mediated degranulation, whereas prolonged exposure to IL-33 reduces IgE-mediated activation. We conclude that mast cells act quickly in response to the alarmin IL-33 to initiate an acute inflammatory response, whereas extended exposure to IL-33 during prolonged inflammation reduces IgE-mediated responses. This negative feedback effect suggests the presence of a novel IL-33 mediated regulatory pathway that modulates IgE-induced human mast cell responses.


2003 ◽  
Vol 16 (1) ◽  
pp. 43-47 ◽  
Author(s):  
M.G. Alexandrakis ◽  
D.S. Kyriakou ◽  
D. Seretakis ◽  
W. Boucher ◽  
R. Letourneau ◽  
...  

Mast cells play an important role in allergic inflammation by releasing histamine, tryptase and several inflammatory cytokines. Human leukemic mast cells (HMC-1) have been used to study mast cell mediators and their role in inflammatory mechanisms. HMC-1 contain and release several inflammatory mediators, of which the proteolytic enzyme tryptase is most characteristic. Retinoids, including retinoic acid, are naturally occurring and synthetic derivatives of vitamin A. All-trans-retinoic (ATRA) acid had been previously reported to inhibit cell proliferation, differentiation and apoptosis. In the present study, we investigated the effect of ATRA on the proliferation and secretion of tryptase in HMC-1. HMC-1 were treated with ATRA at 10-4M, 10-5M or 10-6M for 3,4 or 5 days in culture. Control HMC-1 were treated with equal amount of culture medium only. ATRA decreased the number of HMC-1 as compared to the control group. The same treatment for 3, 4 or 5 days also decreased intracellular tryptase levels. These results indicate that ATRA significantly inhibits both proliferation and growth as shown by the decreased intracellular tryptase levels in HMC-1. ATRA may be a useful agent in the treatment of mast cell proliferative disorders.


Author(s):  
Md Abdul Alim ◽  
Mirjana Grujic ◽  
Paul W. Ackerman ◽  
Per Kristiansson ◽  
Pernilla Eliasson ◽  
...  

Abstract Mast cells are emerging as players in the communication between peripheral nerve endings and cells of the immune system. However, it is not clear the mechanism by which mast cells communicate with peripheral nerves. We previously found that mast cells located within healing tendons can express glutamate receptors, raising the possibility that mast cells may be sensitive to glutamate signaling. To evaluate this hypothesis, we stimulated primary mast cells with glutamate and showed that glutamate induced the profound upregulation of a panel of glutamate receptors of both the ionotropic type (NMDAR1, NMDAR2A, and NMDAR2B) and the metabotropic type (mGluR2 and mGluR7) at both the mRNA and protein levels. The binding of glutamate to glutamate receptors on the mast cell surface was confirmed. Further, glutamate had extensive effects on gene expression in the mast cells, including the upregulation of pro-inflammatory components such as IL-6 and CCL2. Glutamate also induced the upregulation of transcription factors, including Egr2, Egr3 and, in particular, FosB. The extensive induction of FosB was confirmed by immunofluorescence assessment. Glutamate receptor antagonists abrogated the responses of the mast cells to glutamate, supporting the supposition of a functional glutamate–glutamate receptor axis in mast cells. Finally, we provide in vivo evidence supporting a functional glutamate–glutamate receptor axis in the mast cells of injured tendons. Together, these findings establish glutamate as an effector of mast cell function, thereby introducing a novel principle for how cells in the immune system can communicate with nerve cells.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4178
Author(s):  
Ji-Ye Lim ◽  
Ji-Hyun Lee ◽  
Bo-Ri Lee ◽  
Mi Ae Kim ◽  
Young-Mi Lee ◽  
...  

Mast cells are effector cells that initiate allergic inflammatory immune responses by inducing inflammatory mediators. Boehmeria nivea (Linn.) Gaudich is a natural herb in the nettle family Urticaceae that possesses numerous pharmacological properties. Despite the various pharmacological benefits of Boehmeria nivea, its effects on allergic inflammation have not yet been determined. Here, we investigated the effect of the ethanol extract of Boehmeria nivea (BNE) on degranulation rat basophilic leukemia (RBL)-2H3 mast cells stimulated with anti-dinitrophenyl (anti-DNP) and bovine serum albumin (BSA) during immunoglobulin E (IgE)-mediated allergic immune response. The results showed inhibition of the release of β-hexosaminidase and histamine from the cells. BNE suppressed pro-inflammatory cytokines (Tumor necrosis factor (TNF)-α, Interleukin (IL)-1β, and IL-6) and reduced T helper (Th)2 cytokine IL-4 expression and/or secretion correlated with the downregulation of p38, extracellular signal-regulated kinases (ERK) mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) signaling pathways in treated RBL-2H3 mast cells. In passive cutaneous anaphylaxis, treatment with BNE during IgE-mediated local allergic reaction triggered a reduction in mouse ear pigmentation and thickness. Taken together, these results indicated that BNE suppressed mast cell-mediated inflammation, suggesting that BNE might be a candidate for the treatment of various allergic disorders.


2020 ◽  
Vol 21 (20) ◽  
pp. 7688 ◽  
Author(s):  
Ancuta Jurj ◽  
Cecilia Pop-Bica ◽  
Ondrej Slaby ◽  
Cristina D. Ştefan ◽  
William C. Cho ◽  
...  

Communications among cells can be achieved either via direct interactions or via secretion of soluble factors. The emergence of extracellular vesicles (EVs) as entities that play key roles in cell-to-cell communication offer opportunities in exploring their features for use in therapeutics; i.e., management and treatment of various pathologies, such as those used for cancer. The potential use of EVs as therapeutic agents is attributed not only for their cell membrane-bound components, but also for their cargos, mostly bioactive molecules, wherein the former regulate interactions with a recipient cell while the latter trigger cellular functions/molecular mechanisms of a recipient cell. In this article, we highlight the involvement of EVs in hallmarks of a cancer cell, particularly focusing on those molecular processes that are influenced by EV cargos. Moreover, we explored the roles of RNA species and proteins carried by EVs in eliciting drug resistance phenotypes. Interestingly, engineered EVs have been investigated and proposed as therapeutic agents in various in vivo and in vitro studies, as well as in several clinical trials.


PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e55763 ◽  
Author(s):  
Li Zhou ◽  
Sun Young Oh ◽  
Yuqi Zhou ◽  
Baojun Yuan ◽  
Fan Wu ◽  
...  

1997 ◽  
Vol 77 (4) ◽  
pp. 1033-1079 ◽  
Author(s):  
D. D. Metcalfe ◽  
D. Baram ◽  
Y. A. Mekori

Mast cells are found resident in tissues throughout the body, particularly in association with structures such as blood vessels and nerves, and in proximity to surfaces that interface the external environment. Mast cells are bone marrow-derived and particularly depend upon stem cell factor for their survival. Mast cells express a variety of phenotypic features within tissues as determined by the local environment. Withdrawal of required growth factors results in mast cell apoptosis. Mast cells appear to be highly engineered cells with multiple critical biological functions. They may be activated by a number of stimuli that are both Fc epsilon RI dependent and Fc epsilon RI independent. Activation through various receptors leads to distinct signaling pathways. After activation, mast cells may immediately extrude granule-associated mediators and generate lipid-derived substances that induce immediate allergic inflammation. Mast cell activation may also be followed by the synthesis of chemokines and cytokines. Cytokine and chemokine secretion, which occurs hours later, may contribute to chronic inflammation. Biological functions of mast cells appear to include a role in innate immunity, involvement in host defense mechanisms against parasitic infestations, immunomodulation of the immune system, and tissue repair and angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document