scholarly journals RNA-seq highlights parallel and contrasting patterns in the evolution of the nuclear genome of holo-mycoheterotrophic plants

2017 ◽  
Author(s):  
M.I. Schelkunov ◽  
A.A. Penin ◽  
M.D. Logacheva

Summary• While photosynthesis is the most notable trait of plants, several lineages of plants (so-called holo-heterotrophs) have adapted to obtain organic compounds from other sources. The switch to heterotrophy leads to profound changes at the morphological, physiological and genomic levels.• Here, we characterize the transcriptomes of three species representing two lineages of mycoheterotrophic plants: orchids (Epipogium aphyllum and Epipogium roseum) and Ericaceae (Hypopitys monotropa). Comparative analysis is used to highlight the parallelism between distantly related holo-heterotrophic plants.• In both lineages, we observed genome-wide elimination of nuclear genes that encode proteins related to photosynthesis, while systems associated with protein import to plastids as well as plastid transcription and translation remain active. Genes encoding components of plastid ribosomes that have been lost from the plastid genomes have not been transferred to the nuclear genomes; instead, some of the encoded proteins have been substituted by homologs. The nuclear genes of both Epipogium species accumulated mutations twice as rapidly as their photosynthetic relatives; in contrast, no increase in the substitution rate was observed in H.monotropa.• Holo-heterotrophy leads to profound changes in nuclear gene content. The observed increase in the rate of nucleotide substitutions is lineage specific, rather than a universal phenomenon among non-photosynthetic plants.

2003 ◽  
Vol 358 (1429) ◽  
pp. 135-145 ◽  
Author(s):  
John C. Gray ◽  
James A. Sullivan ◽  
Jun-Hui Wang ◽  
Cheryl A. Jerome ◽  
Daniel MacLean

The coordinated expression of genes distributed between the nuclear and plastid genomes is essential for the assembly of functional chloroplasts. Although the nucleus has a pre–eminent role in controlling chloroplast biogenesis, there is considerable evidence that the expression of nuclear genes encoding photosynthesis–related proteins is regulated by signals from plastids. Perturbation of several plastid–located processes, by inhibitors or in mutants, leads to decreased transcription of a set of nuclear photosynthesis–related genes. Characterization of arabidopsis gun ( genomes uncoupled ) mutants, which express nuclear genes in the presence of norflurazon or lincomycin, has provided evidence for two separate signalling pathways, one involving tetrapyrrole biosynthesis intermediates and the other requiring plastid protein synthesis. In addition, perturbation of photosynthetic electron transfer produces at least two different redox signals, as part of the acclimation to altered light conditions. The recognition of multiple plastid signals requires a reconsideration of the mechanisms of regulation of transcription of nuclear genes encoding photosynthesis–related proteins.


2021 ◽  
Author(s):  
Evan S Forsythe ◽  
Alissa M Williams ◽  
Daniel B Sloan

Abstract Nuclear and plastid (chloroplast) genomes experience different mutation rates, levels of selection, and transmission modes, yet key cellular functions depend on their coordinated interactions. Functionally related proteins often show correlated changes in rates of sequence evolution across a phylogeny (evolutionary rate covariation or ERC), offering a means to detect previously unidentified suites of coevolving and cofunctional genes. We performed phylogenomic analyses across angiosperm diversity, scanning the nuclear genome for genes that exhibit ERC with plastid genes. As expected, the strongest hits were highly enriched for genes encoding plastid-targeted proteins, providing evidence that cytonuclear interactions affect rates of molecular evolution at genome-wide scales. Many identified nuclear genes functioned in post-transcriptional regulation and the maintenance of protein homeostasis (proteostasis), including protein translation (in both the plastid and cytosol), import, quality control and turnover. We also identified nuclear genes that exhibit strong signatures of coevolution with the plastid genome, but their encoded proteins lack organellar-targeting annotations, making them candidates for having previously undescribed roles in plastids. In sum, our genome-wide analyses reveal that plastid-nuclear coevolution extends beyond the intimate molecular interactions within chloroplast enzyme complexes and may be driven by frequent rewiring of the machinery responsible for maintenance of plastid proteostasis in angiosperms.


Author(s):  
Vera S. Bogdanova ◽  
Natalia V. Shatskaya ◽  
Anatoliy V. Mglinets ◽  
Oleg E. Kosterin ◽  
Gennadiy V. Vasiliev

AbstractPlastids and mitochondria have their own small genomes which do not undergo meiotic recombination and may have evolutionary fate different from each other and nuclear genome, thus highlighting interesting phenomena in plant evolution. We for the first time sequenced mitochondrial genomes of pea (Pisum L.), in 38 accessions mostly representing diverse wild germplasm from all over pea geographical range. Six structural types of pea mitochondrial genome were revealed. From the same accessions, plastid genomes were sequenced. Bayesian phylogenetic trees based on the plastid and mitochondrial genomes were compared. The topologies of these trees were highly discordant implying not less than six events of hybridisation of diverged wild peas in the past, with plastids and mitochondria differently inherited by the descendants. Such discordant inheritance of organelles is supposed to have been driven by plastid-nuclear incompatibility, known to be widespread in pea wide crosses and apparently shaping the organellar phylogenies. The topology of a phylogenetic tree based on the nucleotide sequence of a nuclear gene His5 coding for a histone H1 subtype corresponds to the current taxonomy and resembles that based on the plastid genome. Wild peas (Pisum sativum subsp. elatius s.l.) inhabiting Southern Europe were shown to be of hybrid origin resulting from crosses of peas similar to those presently inhabiting south-east and north-east Mediterranean in broad sense.


2020 ◽  
Author(s):  
Oscar Alejandro Pérez-Escobar ◽  
Steven Dodsworth ◽  
Diego Bogarín ◽  
Sidonie Bellot ◽  
Juan A. Balbuena ◽  
...  

ABSTRACTPremise of the studyEvolutionary relationships in the species-rich Orchidaceae have historically relied on organellar DNA sequences and limited taxon sampling. Previous studies provided a robust plastid-maternal phylogenetic framework, from which multiple hypotheses on the drivers of orchid diversification have been derived. However, the extent to which the maternal evolutionary history of orchids is congruent with that of the nuclear genome has remained uninvestigated.MethodsWe inferred phylogenetic relationships from 294 low-copy nuclear genes sequenced/obtained using the Angiosperms353 universal probe set from 75 species representing 69 genera, 16 tribes and 24 subtribes. To test for topological incongruence between nuclear and plastid genomes, we constructed a tree from 78 plastid genes, representing 117 genera, 18 tribes and 28 subtribes and compared them using a co-phylogenetic approach. The phylogenetic informativeness and support of the Angiosperms353 loci were compared with those of the 78 plastid genes.Key ResultsPhylogenetic inferences of nuclear datasets produced highly congruent and robustly supported orchid relationships. Comparisons of nuclear gene trees and plastid gene trees using the latest co-phylogenetic tools revealed strongly supported phylogenetic incongruence in both shallow and deep time. Phylogenetic informativeness analyses showed that the Angiosperms353 genes were in general more informative than most plastid genes.ConclusionsOur study provides the first robust nuclear phylogenomic framework for Orchidaceae plus an assessment of intragenomic nuclear discordance, plastid-nuclear tree incongruence, and phylogenetic informativeness across the family. Our results also demonstrate what has long been known but rarely documented: nuclear and plastid phylogenetic trees are not fully congruent and therefore should not be considered interchangeable.


Hereditas ◽  
2021 ◽  
Vol 158 (1) ◽  
Author(s):  
Xinrui Wang ◽  
Weiyi Song ◽  
Guanyu Ji ◽  
Yining Song ◽  
Xiaolei Liu ◽  
...  

Abstract Background The life cycle of Taenia solium is characterized by different stages of development, requiring various kinds of hosts that can appropriately harbor the eggs (proglottids), the oncospheres, the larvae and the adults. Similar to other metazoan pathogens, T. solium undergoes transcriptional and developmental regulation via epigenetics during its complex lifecycle and host interactions. Result In the present study, we integrated whole-genome bisulfite sequencing and RNA-seq technologies to characterize the genome-wide DNA methylation and its effect on transcription of Cysticercus cellulosae of T. solium. We confirm that the T. solium genome in the cysticercus stage is epigenetically modified by DNA methylation in a pattern similar to that of other invertebrate genomes, i.e., sparsely or moderately methylated. We also observed an enrichment of non-CpG methylation in defined genetic elements of the T. solium genome. Furthermore, an integrative analysis of both the transcriptome and the DNA methylome indicated a strong correlation between these two datasets, suggesting that gene expression might be tightly regulated by DNA methylation. Importantly, our data suggested that DNA methylation might play an important role in repressing key parasitism-related genes, including genes encoding excretion-secretion proteins, thereby raising the possibility of targeting DNA methylation processes as a useful strategy in therapeutics of cysticercosis.


2018 ◽  
Author(s):  
Edoardo Giacopuzzi ◽  
Massimo Gennarelli ◽  
Chiara Sacco ◽  
Alice Filippini ◽  
Jessica Mingardi ◽  
...  

AbstractBackgroundA-to-I RNA editing is a co-/post-transcriptional modification catalyzed by ADAR enzymes, that deaminates Adenosines (A) into Inosines (I). Most of known editing events are located within inverted ALU repeats, but they also occur in coding sequences and may alter the function of encoded proteins. RNA editing contributes to generate transcriptomic diversity and it is found altered in cancer, autoimmune and neurological disorders. Emerging evidences indicate that editing process could be influenced by genetic variations, biological and environmental variables.ResultsWe analyzed RNA editing levels in human blood using RNA-seq data from 459 healthy individuals and identified 2,079 sites consistently edited in this tissue. As expected, analysis of gene expression revealed thatADARis the major contributor to editing on these sites, explaining ∼13% of observed variability. After removingADAReffect, we found significant associations for 1,122 genes, mainly involved in RNA processing. These genes were significantly enriched in genes encoding proteins interacting with ADARs, including 276 potential ADARs interactors and 9 ADARs direct partners. In addition, our analysis revealed several factors potentially influencing RNA editing in blood, including cell composition, age, Body Mass Index, smoke and alcohol consumption. Finally, we identified genetic loci associated with editing levels, including knownADAReQTLs and a small region on chromosome 7, containingLOC730338,a lincRNA gene that appears to modulate ADARs mRNA expression.ConclusionsOur data provides a detailed picture of the most relevant RNA editing events and their variability in human blood, giving interesting insights on potential mechanisms behind this post-transcriptional modification and its regulation in this tissue.


2019 ◽  
Vol 20 (5) ◽  
pp. 1056 ◽  
Author(s):  
Pedro Robles ◽  
Víctor Quesada

Given their endosymbiotic origin, chloroplasts and mitochondria genomes harbor only between 100 and 200 genes that encode the proteins involved in organellar gene expression (OGE), photosynthesis, and the electron transport chain. However, as the activity of these organelles also needs a few thousand proteins encoded by the nuclear genome, a close coordination of the gene expression between the nucleus and organelles must exist. In line with this, OGE regulation is crucial for plant growth and development, and is achieved mainly through post-transcriptional mechanisms performed by nuclear genes. In this way, the nucleus controls the activity of organelles and these, in turn, transmit information about their functional state to the nucleus by modulating nuclear expression according to the organelles’ physiological requirements. This adjusts organelle function to plant physiological, developmental, or growth demands. Therefore, OGE must appropriately respond to both the endogenous signals and exogenous environmental cues that can jeopardize plant survival. As sessile organisms, plants have to respond to adverse conditions to acclimate and adapt to them. Salinity is a major abiotic stress that negatively affects plant development and growth, disrupts chloroplast and mitochondria function, and leads to reduced yields. Information on the effects that the disturbance of the OGE function has on plant tolerance to salinity is still quite fragmented. Nonetheless, many plant mutants which display altered responses to salinity have been characterized in recent years, and interestingly, several are affected in nuclear genes encoding organelle-localized proteins that regulate the expression of organelle genes. These results strongly support a link between OGE and plant salt tolerance, likely through retrograde signaling. Our review analyzes recent findings on the OGE functions required by plants to respond and tolerate salinity, and highlights the fundamental role that chloroplast and mitochondrion homeostasis plays in plant adaptation to salt stress.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 635
Author(s):  
Ruchika ◽  
Chisato Okudaira ◽  
Matomo Sakari ◽  
Toshifumi Tsukahara

Cytosine-to-Uridine (C-to-U) RNA editing involves the deamination phenomenon, which is observed in animal nucleus and plant organelles; however, it has been considered the U-to-C is confined to the organelles of limited non-angiosperm plant species. Although previous RNA-seq-based analysis implied U-to-C RNA editing events in plant nuclear genes, it has not been broadly accepted due to inadequate confirmatory analyses. Here we examined the U-to-C RNA editing in Arabidopsis tissues at different developmental stages of growth. In this study, the high-throughput RNA sequencing (RNA-seq) of 12-day-old and 20-day-old Arabidopsis seedlings was performed, which enabled transcriptome-wide identification of RNA editing sites to analyze differentially expressed genes (DEGs) and nucleotide base conversions. The results showed that DEGs were expressed to higher levels in 12-day-old seedlings than in 20-day-old seedlings. Additionally, pentatricopeptide repeat (PPR) genes were also expressed at higher levels, as indicated by the log2FC values. RNA-seq analysis of 12-day- and 20-day-old Arabidopsis seedlings revealed candidates of U-to-C RNA editing events. Sanger sequencing of both DNA and cDNA for all candidate nucleotide conversions confirmed the seven U-to-C RNA editing sites. This work clearly demonstrated presence of U-to-C RNA editing for nuclear genes in Arabidopsis, which provides the basis to study the mechanism as well as the functions of the unique post-transcriptional modification.


2020 ◽  
Author(s):  
Xinrui Wang ◽  
Weiyi Song ◽  
Yining Song ◽  
Guanyu Ji ◽  
Xuenong Luo ◽  
...  

Abstract Background: The life cycle of Taenia solium is characterized by different stages of development, requiring various kinds of hosts that can appropriately harbor the eggs (proglottids), the oncospheres, the larvae and the adults. Similar to other metazoan pathogens, T. solium undergoes transcriptional and developmental regulation via epigenetics during its complex lifecycle and host interactions.Result: In the present study, we integrated whole-genome bisulfite sequencing and RNA-seq technologies to characterize the genome-wide DNA methylation and its effect on transcription of Cysticercus cellulosae of T. solium. We confirm that the T. solium genome in the cysticercus stage is epigenetically modified by DNA methylation in a pattern similar to that of other invertebrate genomes, i.e., sparsely or moderately methylated. We also observed an enrichment of non-CpG methylation in defined genetic elements of the T. solium genome. Furthermore, an integrative analysis of both the transcriptome and the DNA methylome indicated a strong correlation between these two datasets, suggesting that gene expression might be tightly regulated by DNA methylation. Importantly, our data suggested that DNA methylation might play an important role in repressing key parasitism-related genes, including genes encoding excretion-secretion proteins, thereby raising the possibility of targeting DNA methylation processes as a useful strategy in therapeutics of cysticercosis.


Sign in / Sign up

Export Citation Format

Share Document