scholarly journals Fish perform like mammals and birds in inhibitory motor control tasks

2017 ◽  
Author(s):  
Tyrone Lucon-Xiccato ◽  
Elia Gatto ◽  
Angelo Bisazza

AbstractInhibitory control is an executive function that positively predicts performance in several cognitive tasks and has been considered typical of vertebrates with large and complex nervous systems such as primates. However, evidence is growing that some fish species have evolved complex cognitive abilities in spite of their relatively small brain size. We tested whether fish might also show enhanced inhibitory control by subjecting guppies, Poecilia reticulata, to the motor task used to test warm-blooded vertebrates. Guppies were trained to enter a horizontal opaque cylinder to reach a food reward; then, the cylinder was replaced by a transparent one, and subjects needed to inhibit the response to pass thought the transparency to reach the food. Guppies performed correctly in 58 % of trials, a performance fully comparable to that observed in most birds and mammals. In experiment 2, we tested guppies in a task with a different type of reward, a group of conspecifics. Guppies rapidly learned to detour a transparent barrier to reach the social reward with a performance close to that of experiment 1. Our study suggests that efficient inhibitory control is shown also by fish, and its variation between-species is only partially explained by variation in brain size.

2021 ◽  
Author(s):  
Zegni Triki ◽  
Stephanie Fong ◽  
Mirjam Amcoff ◽  
Niclas Kolm

The telencephalon is a brain region believed to have played an essential role during cognitive evolution in vertebrates. However, till now, all the evidence on the evolutionary association between telencephalon size and cognition stem from comparative studies. To experimentally investigate the potential evolutionary association between cognitive abilities and telencephalon size, we used male guppies artificially selected for large and small telencephalon relative to the rest of the brain. In a detour task, we tested a functionally important aspect of executive cognitive ability; inhibitory control abilities. We found that males with larger telencephalon outperformed males with smaller telencephalon. They showed faster improvement in performance during detour training and were more successful in reaching the food reward without touching the transparent barrier. Together, our findings provide the first experimental evidence showing that evolutionary enlargements of relative telencephalon size confer cognitive benefits, supporting an important role for mosaic brain evolution during cognitive evolution.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Manuela Lombardi Brandão ◽  
Ana Marina Tabah de Almeida Fernandes ◽  
Eliane Gonçalves-de-Freitas

Abstract Inhibitory control is a way to infer cognitive flexibility in animals by inhibiting a behavioral propensity to obtain a reward. Here we tested whether there are differences in inhibitory control between females and males of the fish Nile tilapia owing to their distinct reproductive roles. Individuals were tested under a detour-reaching paradigm, consisting of training fish to feed behind an opaque barrier and, thereafter, testing them with a transparent one. Fish is expected to avoid trying to cross through the transparent barrier to achieve food (reward), thus showing inhibitory control by recovering the learned detour with the opaque apparatus. Both males and females learned to detour the transparent barrier with similar scores of correct responses, whereas females reached the food faster. This result is probably associated to their different sex roles in reproduction: females care for the eggs and fry inside their mouth (thus requiring a high inhibitory control not to swallow them), whereas males have to stay inside the territory defending it against intruder males, which also demands some inhibitory ability not to leave the spawning site and take the risk of losing it. Furthermore, this evidence of cognitive flexibility can enable social fish to deal with unpredictable interactions.


2017 ◽  
Vol 7 (3) ◽  
pp. 20160108 ◽  
Author(s):  
Kay E. Holekamp ◽  
Sarah Benson-Amram

Although intelligence should theoretically evolve to help animals solve specific types of problems posed by the environment, it is unclear which environmental challenges favour enhanced cognition, or how general intelligence evolves along with domain-specific cognitive abilities. The social intelligence hypothesis posits that big brains and great intelligence have evolved to cope with the labile behaviour of group mates. We have exploited the remarkable convergence in social complexity between cercopithecine primates and spotted hyaenas to test predictions of the social intelligence hypothesis in regard to both cognition and brain size. Behavioural data indicate that there has been considerable convergence between primates and hyaenas with respect to their social cognitive abilities. Moreover, compared with other hyaena species, spotted hyaenas have larger brains and expanded frontal cortex, as predicted by the social intelligence hypothesis. However, broader comparative study suggests that domain-general intelligence in carnivores probably did not evolve in response to selection pressures imposed specifically in the social domain. The cognitive buffer hypothesis, which suggests that general intelligence evolves to help animals cope with novel or changing environments, appears to offer a more robust explanation for general intelligence in carnivores than any hypothesis invoking selection pressures imposed strictly by sociality or foraging demands.


2019 ◽  
Author(s):  
Sam G. B. Roberts ◽  
Anna Roberts

Group size in primates is strongly correlated with brain size, but exactly what makes larger groups more ‘socially complex’ than smaller groups is still poorly understood. Chimpanzees (Pan troglodytes) and gorillas (Gorilla gorilla) are among our closest living relatives and are excellent model species to investigate patterns of sociality and social complexity in primates, and to inform models of human social evolution. The aim of this paper is to propose new research frameworks, particularly the use of social network analysis, to examine how social structure differs in small, medium and large groups of chimpanzees and gorillas, to explore what makes larger groups more socially complex than smaller groups. Given a fission-fusion system is likely to have characterised hominins, a comparison of the social complexity involved in fission-fusion and more stable social systems is likely to provide important new insights into human social evolution


2020 ◽  
Vol 375 (1803) ◽  
pp. 20190495 ◽  
Author(s):  
Natalie Uomini ◽  
Joanna Fairlie ◽  
Russell D. Gray ◽  
Michael Griesser

Traditional attempts to understand the evolution of human cognition compare humans with other primates. This research showed that relative brain size covaries with cognitive skills, while adaptations that buffer the developmental and energetic costs of large brains (e.g. allomaternal care), and ecological or social benefits of cognitive abilities, are critical for their evolution. To understand the drivers of cognitive adaptations, it is profitable to consider distant lineages with convergently evolved cognitions. Here, we examine the facilitators of cognitive evolution in corvid birds, where some species display cultural learning, with an emphasis on family life. We propose that extended parenting (protracted parent–offspring association) is pivotal in the evolution of cognition: it combines critical life-history, social and ecological conditions allowing for the development and maintenance of cognitive skillsets that confer fitness benefits to individuals. This novel hypothesis complements the extended childhood idea by considering the parents' role in juvenile development. Using phylogenetic comparative analyses, we show that corvids have larger body sizes, longer development times, extended parenting and larger relative brain sizes than other passerines. Case studies from two corvid species with different ecologies and social systems highlight the critical role of life-history features on juveniles’ cognitive development: extended parenting provides a safe haven, access to tolerant role models, reliable learning opportunities and food, resulting in higher survival. The benefits of extended juvenile learning periods, over evolutionary time, lead to selection for expanded cognitive skillsets. Similarly, in our ancestors, cooperative breeding and increased group sizes facilitated learning and teaching. Our analyses highlight the critical role of life-history, ecological and social factors that underlie both extended parenting and expanded cognitive skillsets. This article is part of the theme issue ‘Life history and learning: how childhood, caregiving and old age shape cognition and culture in humans and other animals’.


2021 ◽  
pp. 1-12
Author(s):  
Carel P. van Schaik ◽  
Zegni Triki ◽  
Redouan Bshary ◽  
Sandra A. Heldstab

Both absolute and relative brain sizes vary greatly among and within the major vertebrate lineages. Scientists have long debated how larger brains in primates and hominins translate into greater cognitive performance, and in particular how to control for the relationship between the noncognitive functions of the brain and body size. One solution to this problem is to establish the slope of cognitive equivalence, i.e., the line connecting organisms with an identical bauplan but different body sizes. The original approach to estimate this slope through intraspecific regressions was abandoned after it became clear that it generated slopes that were too low by an unknown margin due to estimation error. Here, we revisit this method. We control for the error problem by focusing on highly dimorphic primate species with large sample sizes and fitting a line through the mean values for adult females and males. We obtain the best estimate for the slope of circa 0.27, a value much lower than those constructed using all mammal species and close to the value expected based on the genetic correlation between brain size and body size. We also find that the estimate of cognitive brain size based on cognitive equivalence fits empirical cognitive studies better than the encephalization quotient, which should therefore be avoided in future studies on primates and presumably mammals and birds in general. The use of residuals from the line of cognitive equivalence may change conclusions concerning the cognitive abilities of extant and extinct primate species, including hominins.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
T Gemeli ◽  
H Silva ◽  
M Kato

Abstract This work arose from the need to broaden the therapeutic approach and offer a differentiated health intervention proposal based on the understanding that the illness process has repercussions on all integrated systems of Being. Since 2019, the Health Center for the Elderly in Blumenau (SC-Brasil), specialized multi-professional service, offering support for biopsychoenergetic transformation with the practice of Yoga and Meditation, through a holistic and comprehensive view of health. It begins with the Multidimensional Assessment of the Elderly, with a guideline in welcoming and qualified listening, which considers the subject and all subjectivity. From there, the expanded diagnosis and the Singular Therapeutic Project are built and the consultations with the team and the 'Re-Conhecer group' begin. The activity is weekly, aimed at the elderly and their family, takes place in an appropriate place and lasts two hours. Welcoming, pranayama, mantras, kriyas and meditation are made, as well as reflections on free themes. The professionals who conduct the practice are the dentist, trained in yoga, and the social worker, the welcoming process continues individually after the activity. Due to subjectivity, results are routinely collected in a qualitative way from the participants' report. There is a perception on the part of the participants, therapists and members of the multidisciplinary team that this work provides improvement in cognitive abilities, self-care, well-being, self-confidence, creativity, improved sleep, autonomy, balance, strengthening bonds, joy, vitality. Key messages This initiative builds new models of health care, transcending the traditional biomedical model, according to the operational guideline for comprehensiveness, universal access and equity. Provokes reflections and builds a new perspective of life with quality and participation of the elderly as subjects of their health.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Manuel Will ◽  
Mario Krapp ◽  
Jay T. Stock ◽  
Andrea Manica

AbstractIncreasing body and brain size constitutes a key macro-evolutionary pattern in the hominin lineage, yet the mechanisms behind these changes remain debated. Hypothesized drivers include environmental, demographic, social, dietary, and technological factors. Here we test the influence of environmental factors on the evolution of body and brain size in the genus Homo over the last one million years using a large fossil dataset combined with global paleoclimatic reconstructions and formalized hypotheses tested in a quantitative statistical framework. We identify temperature as a major predictor of body size variation within Homo, in accordance with Bergmann’s rule. In contrast, net primary productivity of environments and long-term variability in precipitation correlate with brain size but explain low amounts of the observed variation. These associations are likely due to an indirect environmental influence on cognitive abilities and extinction probabilities. Most environmental factors that we test do not correspond with body and brain size evolution, pointing towards complex scenarios which underlie the evolution of key biological characteristics in later Homo.


2020 ◽  
Vol 18 (4) ◽  
pp. 147470492095444
Author(s):  
Liana S. E. Hone ◽  
John E. Scofield ◽  
Bruce D. Bartholow ◽  
David C. Geary

Evolutionary theory suggests that commonly found sex differences are largest in healthy populations and smaller in populations that have been exposed to stressors. We tested this idea in the context of men’s typical advantage (vs. women) in visuospatial abilities (e.g., mental rotation) and women’s typical advantage (vs. men) in social-cognitive (e.g., facial-expression decoding) abilities, as related to frequent binge drinking. Four hundred nineteen undergraduates classified as frequent or infrequent binge drinkers were assessed in these domains. Trial-level multilevel models were used to test a priori Sex × Group (binge drinking) interactions for visuospatial and social-cognitive tasks. Among infrequent binge drinkers, men’s typical advantage in visuospatial abilities and women’s typical advantage in social-cognitive abilities was confirmed. Among frequent binge drinkers, men’s advantage was reduced for one visuospatial task (Δ d = 0.29) and eliminated for another (Δ d = 0.75), and women’s advantage on the social-cognitive task was eliminated (Δ d = 0.12). Males who frequently engaged in extreme binges had exaggerated deficits on one of the visuospatial tasks, as did their female counterparts on the social-cognitive task. The results suggest sex-specific vulnerabilities associated with recent, frequent binge drinking, and support an evolutionary approach to the study of these vulnerabilities.


2012 ◽  
Vol 279 (1740) ◽  
pp. 3027-3034 ◽  
Author(s):  
Luke McNally ◽  
Sam P. Brown ◽  
Andrew L. Jackson

The high levels of intelligence seen in humans, other primates, certain cetaceans and birds remain a major puzzle for evolutionary biologists, anthropologists and psychologists. It has long been held that social interactions provide the selection pressures necessary for the evolution of advanced cognitive abilities (the ‘social intelligence hypothesis’), and in recent years decision-making in the context of cooperative social interactions has been conjectured to be of particular importance. Here we use an artificial neural network model to show that selection for efficient decision-making in cooperative dilemmas can give rise to selection pressures for greater cognitive abilities, and that intelligent strategies can themselves select for greater intelligence, leading to a Machiavellian arms race. Our results provide mechanistic support for the social intelligence hypothesis, highlight the potential importance of cooperative behaviour in the evolution of intelligence and may help us to explain the distribution of cooperation with intelligence across taxa.


Sign in / Sign up

Export Citation Format

Share Document