scholarly journals Single cell lineage dynamics of the endosymbiotic cell type in a soft coral Xenia species

2019 ◽  
Author(s):  
Minjie Hu ◽  
Xiaobin Zheng ◽  
Chen-Ming Fan ◽  
Yixian Zheng

AbstractMany hard and soft corals harbor algae for photosynthesis. The algae live inside coral cells in a specialized membrane compartment called symbiosome, which shares the photosynthetically fixed carbon with coral host cells, while host cells provide inorganic carbon for photosynthesis1. This endosymbiotic relationship is critical for corals, but increased environmental stresses are causing corals to expel their endosymbiotic algae, i.e. coral bleaching, leading to coral death and degradation of marine ecosystem2. To date, the molecular pathways that orchestrate algal recognition, uptake, and maintenance in coral cells remain poorly understood. We report chromosome-level genome assembly of a fast-growing soft coral, Xenia species (sp.)3, and its use as a model to decipher the coral-algae endosymbiosis. Single cell RNA-sequencing (scRNA-seq) identified 13 cell types, including gastrodermis and cnidocytes, in Xenia sp. Importantly, we identified the endosymbiotic cell type that expresses a unique set of genes implicated in the recognition, phagocytosis/endocytosis, maintenance of algae, and host coral cell immune modulation. By applying scRNA-seq to investigate algal uptake in our new Xenia sp.. regeneration model, we uncovered a dynamic lineage progression from endosymbiotic progenitor state to mature endosymbiotic and post-endosymbiotic cell states. The evolutionarily conserved genes associated with the endosymbiotic process reported herein open the door to decipher common principles by which different corals uptake and expel their endosymbionts. Our study demonstrates the potential of single cell analyses to examine the similarities and differences of the endosymbiotic lifestyle among different coral species.

2021 ◽  
Author(s):  
Alyson M Hockenberry ◽  
Gabriele Micali ◽  
Gabriella Takács ◽  
Jessica Weng ◽  
Wolf-Dietrich Hardt ◽  
...  

AbstractSalmonella spp. express Salmonella pathogenicity island 1 (SPI-1) genes to mediate the initial phase of interaction with host cells. Prior studies indicate short-chain fatty acids, microbial metabolites at high concentrations in the gastrointestinal tract, limit SPI-1 gene expression. A number of reports show only a subset of Salmonella cells in a population express these genes, suggesting short-chain fatty acids could decrease SPI-1 population-level expression by acting on per-cell expression and/or the proportion of expressing cells. Here, we combine single-cell, theoretical, and molecular approaches to address the effect of short-chain fatty acids on SPI-1 expression. Our results show short-chain fatty acids do not repress SPI-1 expression by individual cells. Rather, these compounds act to selectively slow the growth of SPI-1 expressing cells, ultimately decreasing their frequency in the population. Further experiments indicate slowed growth arises from short-chain fatty acid-mediated depletion of the proton motive force. By influencing the SPI-1 cell-type proportions, our findings imply gut microbial metabolites act on cooperation between the two cell-types and ultimately influence Salmonella’s capacity to establish within a host.Significance StatementEmergence of distinct cell-types in populations of genetically identical bacteria is common. Furthermore, it is becoming increasingly clear that cooperation between cell-types can be beneficial. This is the case during Salmonella infection, in which cooperation between inflammation-inducing virulent and fast-growing avirulent cell-types occurs during infection to aid in colonization of the host gut. Here, we show gut microbiota-derived metabolites slow growth by the virulent cell-type. Our study implies microbial metabolites shape cooperative interactions between the virulent and avirulent cell types, a finding that can help explain the wide array of clinical manifestations of Salmonella infection.


2020 ◽  
Vol 117 (25) ◽  
pp. 13886-13895 ◽  
Author(s):  
August Yue Huang ◽  
Pengpeng Li ◽  
Rachel E. Rodin ◽  
Sonia N. Kim ◽  
Yanmei Dou ◽  
...  

Elucidating the lineage relationships among different cell types is key to understanding human brain development. Here we developed parallel RNA and DNA analysis after deep sequencing (PRDD-seq), which combines RNA analysis of neuronal cell types with analysis of nested spontaneous DNA somatic mutations as cell lineage markers, identified from joint analysis of single-cell and bulk DNA sequencing by single-cell MosaicHunter (scMH). PRDD-seq enables simultaneous reconstruction of neuronal cell type, cell lineage, and sequential neuronal formation (“birthdate”) in postmortem human cerebral cortex. Analysis of two human brains showed remarkable quantitative details that relate mutation mosaic frequency to clonal patterns, confirming an early divergence of precursors for excitatory and inhibitory neurons, and an “inside-out” layer formation of excitatory neurons as seen in other species. In addition our analysis allows an estimate of excitatory neuron-restricted precursors (about 10) that generate the excitatory neurons within a cortical column. Inhibitory neurons showed complex, subtype-specific patterns of neurogenesis, including some patterns of development conserved relative to mouse, but also some aspects of primate cortical interneuron development not seen in mouse. PRDD-seq can be broadly applied to characterize cell identity and lineage from diverse archival samples with single-cell resolution and in potentially any developmental or disease condition.


2020 ◽  
Author(s):  
August Yue Huang ◽  
Pengpeng Li ◽  
Rachel E. Rodin ◽  
Sonia N. Kim ◽  
Yanmei Dou ◽  
...  

AbstractElucidating the lineage relationships among different cell types is key to understanding human brain development. Here we developed Parallel RNA and DNA analysis after Deep-sequencing (PRDD-seq), which combines RNA analysis of neuronal cell types with analysis of nested spontaneous DNA somatic mutations as cell lineage markers, identified from joint analysis of single cell and bulk DNA sequencing by single-cell MosaicHunter (scMH). PRDD-seq enables the first-ever simultaneous reconstruction of neuronal cell type, cell lineage, and sequential neuronal formation (“birthdate”) in postmortem human cerebral cortex. Analysis of two human brains showed remarkable quantitative details that relate mutation mosaic frequency to clonal patterns, confirming an early divergence of precursors for excitatory and inhibitory neurons, and an “inside-out” layer formation of excitatory neurons as seen in other species. In addition our analysis allows the first estimate of excitatory neuron-restricted precursors (about 10) that generate the excitatory neurons within a cortical column. Inhibitory neurons showed complex, subtype-specific patterns of neurogenesis, including some patterns of development conserved relative to mouse, but also some aspects of primate cortical interneuron development not seen in mouse. PRDD-seq can be broadly applied to characterize cell identity and lineage from diverse archival samples with single-cell resolution and in potentially any developmental or disease condition.Significance StatementStem cells and progenitors undergo a series of cell divisions to generate the neurons of the brain, and understanding this sequence is critical to studying the mechanisms that control cell division and migration in developing brain. Mutations that occur as cells divide are known as the basis of cancer, but have more recently been shown to occur with normal cell divisions, creating a permanent, forensic map of the clonal patterns that define the brain. Here we develop new technology to analyze both DNA mutations and RNA gene expression patterns in single cells from human postmortem brain, allowing us to define clonal patterns among different types of human brain neurons, gaining the first direct insight into how they form.


2020 ◽  
Author(s):  
Zhuoxin Chen ◽  
Chang Ye ◽  
Zhan Liu ◽  
Shanjun Deng ◽  
Xionglei He ◽  
...  

AbstractIt has been challenging to characterize the lineage relationships among cells in vertebrates, which comprise a great number of cells. Fortunately, recent progress has been made by combining the CRISPR barcoding system with single-cell sequencing technologies to provide an unprecedented opportunity to track lineage at single-cell resolution. However, due to errors and/or dropouts introduced by amplification and sequencing, reconstruction of accurate lineage relationships in complex organisms remains a challenge. Thus, improvements in both experimental design and computational analysis are necessary for lineage inference. In this study, we employed single-cell Lineage tracing On Endogenous Scarring Sites (scLOESS), a lineage recording strategy based on the CRISPR-Cas9 system, to trace cell fate commitments for zebrafish larvae. With rigorous quality control, we demonstrated that lineage commitments of complex organisms could be inferred from a limited number of barcoding sites. Together with cell-type characterization, our method could homogenously recover lineage information. In combination with the cell-type and lineage information, we depicted the development histories for germ layers as well as cell types. Furthermore, when combined with trajectory analysis, our methods could capture and resolve the ongoing lineage commitment events to gain further biological insights into later development and differentiation in complex organisms.


2018 ◽  
Author(s):  
Jun Ding ◽  
Chieh Lin ◽  
Ziv Bar-Joseph

Several recent studies focus on the inference of developmental and response trajectories from single cell NA-Seq (scRNA-Seq) data. A number of computational methods, often referred to as pseudo-time ordering, have been developed for this task. Recently, CRISPR has also been used to reconstruct lineage trees by inserting random mutations. However, both approaches suffer from drawbacks that limit their use. Here we develop a method to detect significant, cell type specific, sequence mutations from scRNA-Seq data. We show that only a few mutations are enough for reconstructing good branching models. Integrating these mutations with expression data further improves the accuracy of the reconstructed models. As we show, the majority of mutations we identify are likely RNA editing events indicating that such information can be used to distinguish cell types.


2020 ◽  
Author(s):  
Feng Tian ◽  
Fan Zhou ◽  
Xiang Li ◽  
Wenping Ma ◽  
Honggui Wu ◽  
...  

SummaryBy circumventing cellular heterogeneity, single cell omics have now been widely utilized for cell typing in human tissues, culminating with the undertaking of human cell atlas aimed at characterizing all human cell types. However, more important are the probing of gene regulatory networks, underlying chromatin architecture and critical transcription factors for each cell type. Here we report the Genomic Architecture of Cells in Tissues (GeACT), a comprehensive genomic data base that collectively address the above needs with the goal of understanding the functional genome in action. GeACT was made possible by our novel single-cell RNA-seq (MALBAC-DT) and ATAC-seq (METATAC) methods of high detectability and precision. We exemplified GeACT by first studying representative organs in human mid-gestation fetus. In particular, correlated gene modules (CGMs) are observed and found to be cell-type-dependent. We linked gene expression profiles to the underlying chromatin states, and found the key transcription factors for representative CGMs.HighlightsGenomic Architecture of Cells in Tissues (GeACT) data for human mid-gestation fetusDetermining correlated gene modules (CGMs) in different cell types by MALBAC-DTMeasuring chromatin open regions in single cells with high detectability by METATACIntegrating transcriptomics and chromatin accessibility to reveal key TFs for a CGM


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Alexander J Tarashansky ◽  
Jacob M Musser ◽  
Margarita Khariton ◽  
Pengyang Li ◽  
Detlev Arendt ◽  
...  

Comparing single-cell transcriptomic atlases from diverse organisms can elucidate the origins of cellular diversity and assist the annotation of new cell atlases. Yet, comparison between distant relatives is hindered by complex gene histories and diversifications in expression programs. Previously, we introduced the self-assembling manifold (SAM) algorithm to robustly reconstruct manifolds from single-cell data (Tarashansky et al., 2019). Here, we build on SAM to map cell atlas manifolds across species. This new method, SAMap, identifies homologous cell types with shared expression programs across distant species within phyla, even in complex examples where homologous tissues emerge from distinct germ layers. SAMap also finds many genes with more similar expression to their paralogs than their orthologs, suggesting paralog substitution may be more common in evolution than previously appreciated. Lastly, comparing species across animal phyla, spanning mouse to sponge, reveals ancient contractile and stem cell families, which may have arisen early in animal evolution.


Author(s):  
Sergio Triana ◽  
Megan L. Stanifer ◽  
Mohammed Shahraz ◽  
Markus Mukenhirn ◽  
Carmon Kee ◽  
...  

AbstractHuman intestinal epithelial cells form a primary barrier protecting us from pathogens, yet only limited knowledge is available about individual contribution of each cell type to mounting an immune response against infection. Here, we developed a pipeline combining single-cell RNA-Seq and highly-multiplex RNA imaging and applied it to human intestinal organoids infected with human astrovirus, a model human enteric virus. We found that interferon controls the infection and that astrovirus infects all major cell types and lineages with a preferential infection of proliferating cells. Intriguingly, each intestinal epithelial cell lineage has a unique basal expression of interferon-stimulated genes and, upon astrovirus infection, undergoes an antiviral transcriptional reprogramming by upregulating distinct sets of interferon-stimulated genes. These findings suggest that in the human intestinal epithelium, each cell lineage plays a unique role in resolving virus infection. Our pipeline can be applicable to other organoids and viruses, opening new avenues to unravel roles of individual cell types in viral pathogenesis.


2020 ◽  
Author(s):  
Mohit Goyal ◽  
Guillermo Serrano ◽  
Ilan Shomorony ◽  
Mikel Hernaez ◽  
Idoia Ochoa

AbstractSingle-cell RNA-seq is a powerful tool in the study of the cellular composition of different tissues and organisms. A key step in the analysis pipeline is the annotation of cell-types based on the expression of specific marker genes. Since manual annotation is labor-intensive and does not scale to large datasets, several methods for automated cell-type annotation have been proposed based on supervised learning. However, these methods generally require feature extraction and batch alignment prior to classification, and their performance may become unreliable in the presence of cell-types with very similar transcriptomic profiles, such as differentiating cells. We propose JIND, a framework for automated cell-type identification based on neural networks that directly learns a low-dimensional representation (latent code) in which cell-types can be reliably determined. To account for batch effects, JIND performs a novel asymmetric alignment in which the transcriptomic profile of unseen cells is mapped onto the previously learned latent space, hence avoiding the need of retraining the model whenever a new dataset becomes available. JIND also learns cell-type-specific confidence thresholds to identify and reject cells that cannot be reliably classified. We show on datasets with and without batch effects that JIND classifies cells more accurately than previously proposed methods while rejecting only a small proportion of cells. Moreover, JIND batch alignment is parallelizable, being more than five or six times faster than Seurat integration. Availability: https://github.com/mohit1997/JIND.


2021 ◽  
Author(s):  
Yun Zhang ◽  
Brian Aevermann ◽  
Rohan Gala ◽  
Richard H. Scheuermann

Reference cell type atlases powered by single cell transcriptomic profiling technologies have become available to study cellular diversity at a granular level. We present FR-Match for matching query datasets to reference atlases with robust and accurate performance for identifying novel cell types and non-optimally clustered cell types in the query data. This approach shows excellent performance for cross-platform, cross-sample type, cross-tissue region, and cross-data modality cell type matching.


Sign in / Sign up

Export Citation Format

Share Document