scholarly journals Perfect mimicry between Heliconius butterflies is constrained by genetics and development

2020 ◽  
Author(s):  
Steven M. Van Belleghem ◽  
Paola A. Alicea Roman ◽  
Heriberto Carbia Gutierrez ◽  
Brian A. Counterman ◽  
Riccardo Papa

Müllerian mimicry strongly exemplifies the power of natural selection. However, the exact measure of such adaptive phenotypic convergence and the possible causes of its imperfection often remain unidentified. The butterfly species Heliconius erato and Heliconius melpomene have a large diversity of co-mimicking geographic races with remarkable resemblance in melanic patterning across the mid-forewing that has been linked to expression patterns of the gene WntA. Recent CRISPR/Cas9 experiments have informed us on the exact areas of the wings in which WntA affects color pattern formation in both H. erato and H. melpomene, thus providing a unique comparative dataset to explore the functioning of a gene and its potential effect on phenotypic evolution. We therefore quantified wing color pattern differences in the mid-forewing region of 14 co-mimetic races of H. erato and H. melpomene and measured the extent to which mimicking races are not perfectly identical. While the relative size of the mid-forewing pattern is generally nearly identical, our results highlight the areas of the wing that prevent these species from achieving perfect mimicry and demonstrate that this mismatch can be largely explained by constraints imposed by divergence in the gene regulatory network that define wing color patterning. Divergence in the developmental architecture of a trait can thus constrain morphological evolution even between relatively closely related species.

2020 ◽  
Vol 287 (1931) ◽  
pp. 20201267
Author(s):  
Steven M. Van Belleghem ◽  
Paola A. Alicea Roman ◽  
Heriberto Carbia Gutierrez ◽  
Brian A. Counterman ◽  
Riccardo Papa

Müllerian mimicry strongly exemplifies the power of natural selection. However, the exact measure of such adaptive phenotypic convergence and the possible causes of its imperfection often remain unidentified. Here, we first quantify wing colour pattern differences in the forewing region of 14 co-mimetic colour pattern morphs of the butterfly species Heliconius erato and Heliconius melpomene and measure the extent to which mimicking colour pattern morphs are not perfectly identical. Next, using gene-editing CRISPR/Cas9 KO experiments of the gene WntA , which has been mapped to colour pattern diversity in these butterflies, we explore the exact areas of the wings in which WntA affects colour pattern formation differently in H. erato and H. melpomene. We find that, while the relative size of the forewing pattern is generally nearly identical between co-mimics, the CRISPR/Cas9 KO results highlight divergent boundaries in the wing that prevent the co-mimics from achieving perfect mimicry. We suggest that this mismatch may be explained by divergence in the gene regulatory network that defines wing colour patterning in both species, thus constraining morphological evolution even between closely related species.


2007 ◽  
Vol 3 (6) ◽  
pp. 660-663 ◽  
Author(s):  
Kanchon K Dasmahapatra ◽  
Armando Silva-Vásquez ◽  
Jae-Woo Chung ◽  
James Mallet

Interspecific hybridization occurs regularly in wild Heliconius butterflies, although hybrid individuals are usually very rare. However, hybridization generally occurs only between the most closely related species. We report a rare naturally occurring hybrid between non-sister species and carry out the first genetic analysis of such distant hybridization. Mitochondrial and nuclear genes indicate that the specimen is an F 1 hybrid between a female Heliconius ethilla and a male Heliconius melpomene , originating from a group of 13 species estimated to have diverged over 2.5 Myr ago. The presence of such distant natural hybrids, together with evidence for backcrossing, suggests that gene flow across species boundaries can take place long after speciation. Adaptive genes such as those involved in wing coloration could thus be widely shared among members of this highly mimetic genus.


Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 34
Author(s):  
Taesic Lee ◽  
Hyunju Lee

Alzheimer’s disease (AD) and diabetes mellitus (DM) are known to have a shared molecular mechanism. We aimed to identify shared blood transcriptomic signatures between AD and DM. Blood expression datasets for each disease were combined and a co-expression network was used to construct modules consisting of genes with similar expression patterns. For each module, a gene regulatory network based on gene expression and protein-protein interactions was established to identify hub genes. We selected one module, where COPS4, PSMA6, GTF2B, GTF2F2, and SSB were identified as dysregulated transcription factors that were common between AD and DM. These five genes were also differentially co-expressed in disease-related tissues, such as the brain in AD and the pancreas in DM. Our study identified gene modules that were dysregulated in both AD and DM blood samples, which may contribute to reveal common pathophysiology between two diseases.


2019 ◽  
Author(s):  
Dan Ramirez ◽  
Vivek Kohar ◽  
Ataur Katebi ◽  
Mingyang Lu

AbstractEpithelial-mesenchymal transition (EMT) plays a crucial role in embryonic development and tumorigenesis. Although EMT has been extensively studied with both computational and experimental methods, the gene regulatory mechanisms governing the transition are not yet well understood. Recent investigations have begun to better characterize the complex phenotypic plasticity underlying EMT using a computational systems biology approach. Here, we analyzed recently published single-cell RNA sequencing data from E9.5 to E11.5 mouse embryonic skin cells and identified the gene expression patterns of both epithelial and mesenchymal phenotypes, as well as a clear hybrid state. By integrating the scRNA-seq data and gene regulatory interactions from the literature, we constructed a gene regulatory network model governing the decision-making of EMT in the context of the developing mouse embryo. We simulated the network using a recently developed mathematical modeling method, named RACIPE, and observed three distinct phenotypic states whose gene expression patterns can be associated with the epithelial, hybrid, and mesenchymal states in the scRNA-seq data. Additionally, the model is in agreement with published results on the composition of EMT phenotypes and regulatory networks. We identified Wnt signaling as a major pathway in inducing the EMT and its role in driving cellular state transitions during embryonic development. Our findings demonstrate a new method of identifying and incorporating tissue-specific regulatory interactions into gene regulatory network modeling.Author SummaryEpithelial-mesenchymal transition (EMT) is a cellular process wherein cells become disconnected from their surroundings and acquire the ability to migrate through the body. EMT has been observed in biological contexts including development, wound healing, and cancer, yet the regulatory mechanisms underlying it are not well understood. Of particular interest is a purported hybrid state, in which cells can retain some adhesion to their surroundings but also show mesenchymal traits. Here, we examine the prevalence and composition of the hybrid state in the context of the embryonic mouse, integrating gene regulatory interactions from published experimental results as well as from the specific single cell RNA sequencing dataset of interest. Using mathematical modeling, we simulated a regulatory network based on these sources and aligned the simulated phenotypes with those in the data. We identified a hybrid EMT phenotype and revealed the inducing effect of Wnt signaling on EMT in this context. Our regulatory network construction process can be applied beyond EMT to illuminate the behavior of any biological phenomenon occurring in a specific context, allowing better identification of therapeutic targets and further research directions.


2020 ◽  
Author(s):  
Alexander Calderwood ◽  
Jo Hepworth ◽  
Shannon Woodhouse ◽  
Lorelei Bilham ◽  
D. Marc Jones ◽  
...  

AbstractThe timing of the floral transition affects reproduction and yield, however its regulation in crops remains poorly understood. Here, we use RNA-Seq to determine and compare gene expression dynamics through the floral transition in the model species Arabidopsis thaliana and the closely related crop Brassica rapa. A direct comparison of gene expression over time between species shows little similarity, which could lead to the inference that different gene regulatory networks are at play. However, these differences can be largely resolved by synchronisation, through curve registration, of gene expression profiles. We find that different registration functions are required for different genes, indicating that there is no common ‘developmental time’ to which Arabidopsis and B. rapa can be mapped through gene expression. Instead, the expression patterns of different genes progress at different rates. We find that co-regulated genes show similar changes in synchronisation between species, suggesting that similar gene regulatory sub-network structures may be active with different wiring between them. A detailed comparison of the regulation of the floral transition between Arabidopsis and B. rapa, and between two B. rapa accessions reveals different modes of regulation of the key floral integrator SOC1, and that the floral transition in the B. rapa accessions is triggered by different pathways, even when grown under the same environmental conditions. Our study adds to the mechanistic understanding of the regulatory network of flowering time in rapid cycling B. rapa under long days and highlights the importance of registration methods for the comparison of developmental gene expression data.


Development ◽  
1997 ◽  
Vol 124 (1) ◽  
pp. 149-157 ◽  
Author(s):  
B.T. Rogers ◽  
M.D. Peterson ◽  
T.C. Kaufman

The products of the HOM/Hox homeotic genes form a set of evolutionarily conserved transcription factors that control elaborate developmental processes and specify cell fates in many metazoans. We examined the expression of the ortholog of the homeotic gene Sex combs reduced (Scr) of Drosophila melanogaster in insects of three divergent orders: Hemiptera, Orthoptera and Thysanura. Our data reflect how the conservation and variation of Scr expression has affected the morphological evolution of insects. Whereas the anterior epidermal expression of Scr, in a small part of the posterior maxillary and all of the labial segment, is found to be in common among all four insect orders, the posterior (thoracic) expression domains vary. Unlike what is observed in flies, the Scr orthologs of other insects are not expressed broadly over the first thoracic segment, but are restricted to small patches. We show here that Scr is required for suppression of wings on the prothorax of Drosophila. Moreover, Scr expression at the dorsal base of the prothoracic limb in two other winged insects, crickets (Orthoptera) and milkweed bugs (Hemiptera), is consistent with Scr acting as a suppressor of prothoracic wings in these insects. Scr is also expressed in a small patch of cells near the basitarsal-tibial junction of milkweed bugs, precisely where a leg comb develops, suggesting that Scr promotes comb formation, as it does in Drosophila. Surprisingly, the dorsal prothoracic expression of Scr is also present in the primitively wingless firebrat (Thysanura) and the leg patch is seen in crickets, which have no comb. Mapping both gene expression patterns and morphological characters onto the insect phylogenetic tree demonstrates that in the cases of wing suppression and comb formation the appearance of expression of Scr in the prothorax apparently precedes these specific functions.


Zootaxa ◽  
2012 ◽  
Vol 3303 (1) ◽  
pp. 59 ◽  
Author(s):  
CARLOS PRIETO ◽  
GABRIEL RODRIGUEZ

A new butterfly species, Podanotum pulsar Prieto & Rodríguez n. sp. is described from the high Andes of Colombia. Wepresent a brief discussion on its systematic placement and on adult ecology. Adult specimens and the genitalia of the male andfemale are illustrated and compared with the most closely related species Podanotum glorissimum Bálint & Wojtusiak, according to morphological characters.


Zootaxa ◽  
2017 ◽  
Vol 4310 (1) ◽  
pp. 1 ◽  
Author(s):  
JOÃO PEDRO FONTENELLE ◽  
MARCELO R. DE CARVALHO

Potamotrygon scobina Garman, 1913, described from Cametá, rio Tocantins, lower Amazon basin, is taxonomically reviewed through an extensive morphological study of internal and external features. Specimens identified as P. scobina from different locations of the Amazon basin were also studied. The identity of P. scobina, its morphology, and distribution are redefined. In addition, three new species closely related to P. scobina are described from Brazil: Potamotrygon adamastor, sp. nov., from rio Uraricoera, rio Branco system, upper Amazon basin; Potamotrygon amazona, sp. nov., from rio Juruá, upper Amazon basin; and Potamotrygon garmani, sp. nov., from the mid to upper rio Tocantins. These three new species do not occur sympatrically with P. scobina, as far as known. Together with P. scobina and P. limai Fontenelle, Silva & Carvalho, 2014, the new species have three angular cartilages of different sizes, a condition not seen in any other potamotrygonin (which have either one or two angulars). Diagnostic characters in combination are primarily morphometric proportions, especially tail length and width, dermal denticles and tail thorns (their relative size, number, morphology, and distribution), tooth size and number of rows, and color pattern. Printed copy of this book is available from US$24.6 plus postage, Click here to order.


Sign in / Sign up

Export Citation Format

Share Document