scholarly journals 25-Hydroxycholesterol amplifies microglial IL-1β production in an apoE isoform-dependent manner

2020 ◽  
Author(s):  
Man Ying Wong ◽  
Michael Lewis ◽  
James J. Doherty ◽  
Yang Shi ◽  
Patrick M. Sullivan ◽  
...  

AbstractGenome-wide association studies associated with Alzheimer’s disease (AD) have implicated pathways related to both lipid homeostasis and innate immunity in the pathophysiology of AD. However, the exact cellular and chemical mediators of neuroinflammation in AD remain poorly understood. The oxysterol 25-hydroxycholesterol (25-HC) is an important immunomodulator produced by peripheral macrophages with wide-ranging effects on cell signaling and innate immunity. Genetic variants of the enzyme responsible for 25-HC production, cholesterol 25-hydroxylase (CH25H), have been found to be associated with AD. In the present study, we found that the CH25H expression is upregulated in human AD brain tissue and in transgenic mouse brain tissue bearing amyloid-β (Aβ) plaques or tau pathology. Treatment with the toll-like receptor 4 (TLR4) agonist lipopolysaccharide (LPS) markedly upregulates CH25H expression in the mouse brain in vivo. LPS also stimulates CH25H expression and 25-HC secretion in cultured mouse primary microglia. We also found that LPS-induced microglial production of the pro-inflammatory cytokine IL1β is markedly potentiated by 25-HC and attenuated by genetic deletion of CH25H. Microglia expressing apolipoprotein E4 (apoE4), a genetic risk factor for AD, produce greater amounts of 25-HC than apoE3-expressing microglia following treatment with LPS. Remarkably, treatment of microglia with 25-HC results in a much greater level of IL1β secretion in LPS-activated apoE4-expressing microglia than in apoE2- or apoE3-expressing microglia. Blocking potassium efflux or inhibiting caspase-1 prevents 25-HC-potentiated IL1β release in apoE4-expressing microglia, indicating the involvement of caspase-1/NLRP3 inflammasome activity. 25-HC may function as a microglial secreted inflammatory mediator in brain, promoting IL1β-mediated neuroinflammation in an apoE isoform-dependent manner (E4≫E2/E3) and thus may be an important mediator of neuroinflammation in AD.

2020 ◽  
Author(s):  
Man Ying Wong ◽  
Michael Lewis ◽  
James J Doherty ◽  
Yang Shi ◽  
Anil G Cashikar ◽  
...  

Abstract Background : Genome-wide association studies of Alzheimer’s disease (AD) have implicated pathways related to lipid homeostasis and innate immunity in AD pathophysiology. However, the exact cellular and chemical mediators of neuroinflammation in AD remain poorly understood. The oxysterol 25-hydroxycholesterol (25-HC) is an important immunomodulator produced by peripheral macrophages with wide-ranging effects on cell signaling and innate immunity. Genetic variants of the enzyme responsible for 25-HC production, cholesterol 25‑hydroxylase (CH25H), have been found to be associated with AD. Methods: We used real time-PCR and immunoblotting to examine CH25H expression in human AD brain tissue and in transgenic mouse brain tissue bearing amyloid-β plaques or tau pathology. The innate immune response of primary mouse microglia under different treatment condition or bearing different genetic backgrounds was analyzed using ELISA, western blotting or immunocytochemistry. Results : We found that CH25H expression is upregulated in human AD brain tissue and in transgenic mouse brain tissue bearing amyloid-β plaques or tau pathology. Treatment with the toll-like receptor 4 (TLR4) agonist lipopolysaccharide (LPS) markedly upregulates CH25H expression in the mouse brain and stimulates CH25H expression and 25-HC secretion in mouse primary microglia. We found that LPS-induced microglial production of the pro-inflammatory cytokine IL-1β is markedly potentiated by 25-HC and attenuated by deletion of CH25H. Microglia expressing apolipoprotein E4 (apoE4), a genetic risk factor for AD, produce greater amounts of 25-HC than apoE3-expressing microglia following treatment with LPS. Remarkably, 25-HC treatment results in a greater level of IL-1β secretion in LPS-activated apoE4-expressing microglia than in apoE2- or apoE3-expressing microglia. Blocking potassium efflux or inhibiting caspase-1 prevents 25-HC-potentiated IL-1β release in apoE4-expressing microglia, indicating the involvement of caspase-1/NLRP3 inflammasome activity. Conclusion : 25-HC may function as a microglial secreted inflammatory mediator in brain, promoting IL-1β-mediated neuroinflammation in an apoE isoform-dependent manner (E4>>E2/E3) and thus may be an important mediator of neuroinflammation in AD.


2018 ◽  
Vol 215 (3) ◽  
pp. 745-760 ◽  
Author(s):  
Wilbur M. Song ◽  
Satoru Joshita ◽  
Yingyue Zhou ◽  
Tyler K. Ulland ◽  
Susan Gilfillan ◽  
...  

Alzheimer’s disease (AD) is a neurodegenerative disease that causes late-onset dementia. The R47H variant of the microglial receptor TREM2 triples AD risk in genome-wide association studies. In mouse AD models, TREM2-deficient microglia fail to proliferate and cluster around the amyloid-β plaques characteristic of AD. In vitro, the common variant (CV) of TREM2 binds anionic lipids, whereas R47H mutation impairs binding. However, in vivo, the identity of TREM2 ligands and effect of the R47H variant remain unknown. We generated transgenic mice expressing human CV or R47H TREM2 and lacking endogenous TREM2 in the 5XFAD AD model. Only the CV transgene restored amyloid-β–induced microgliosis and microglial activation, indicating that R47H impairs TREM2 function in vivo. Remarkably, soluble TREM2 was found on neurons and plaques in CV- but not R47H-expressing 5XFAD brains, although in vitro CV and R47H were shed similarly via Adam17 proteolytic activity. These results demonstrate that TREM2 interacts with neurons and plaques duing amyloid-β accumulation and R47H impairs this interaction.


2015 ◽  
Vol 43 (5) ◽  
pp. 920-923 ◽  
Author(s):  
Hongyun Li ◽  
Tim Karl ◽  
Brett Garner

ATP-binding cassette transporter A7 (ABCA7) is highly expressed in the brain. Recent genome-wide association studies (GWAS) identify ABCA7 single nt polymorphisms (SNPs) that increase Alzheimer's disease (AD) risk. It is now important to understand the true function of ABCA7 in the AD context. We have begun to address this using in vitro and in vivo AD models. Our initial studies showed that transient overexpression of ABCA7 in Chinese hamster ovary cells stably expressing human amyloid precursor protein (APP) resulted in an approximate 50% inhibition in the production of the AD-related amyloid-β (Aβ) peptide as compared with mock-transfected cells. This increased ABCA7 expression was also associated with alterations in other markers of APP processing and an accumulation of cellular APP. To probe for a function of ABCA7 in vivo, we crossed Abca7−/− mice with J20 mice, an amyloidogenic transgenic AD mouse model [B6.Cg-Tg(PDGFB-APPSwInd)20Lms/J] expressing a mutant form of human APP bearing both the Swedish (K670N/M671L) and Indiana (V717F) familial AD mutations. We found that ABCA7 loss doubled insoluble Aβ levels and amyloid plaques in the brain. This did not appear to be related to changes in APP processing (C-terminal fragment analysis), which led us to assess other mechanism by which ABCA7 may modulate Aβ homoeostasis. As we have shown that microglia express high levels of ABCA7, we examined a role for ABCA7 in the phagocytic clearance of Aβ. Our data indicated that the capacity for bone marrow-derived macrophages derived from Abca7−/− mice to phagocytose Aβ was reduced by 51% compared with wild-type (WT) mice. This suggests ABCA7 plays a role in the regulation of Aβ homoeostasis in the brain and that this may be related to Aβ clearance by microglia.


2021 ◽  
Author(s):  
Astrid F. Feiten ◽  
Carol Au ◽  
Annika van Hummel ◽  
Julia van der Hoven ◽  
Yuanyuan Deng ◽  
...  

Abstract Background. Amyloid-β (Aβ) and tau form pathogenic lesions in Alzheimer’s disease (AD) brains. As ΑD clinically progresses, tau pathology propagates in a very distinct pattern between connected brain areas. The molecular mechanisms underlying this tau pathology spread remain largely unknown. Genome-wide association studies have identified polymorphisms in triggering receptor expressed on myeloid cells 2 ( TREM2 ) as genetic risk factors for AD and regulators of Aβ pathology-dependent tau propagation. Whether TREM2 contributes to neuron-to-neuron spreading of pathological tau remains unknown.Methods. Here, we crossed Trem2- deficient mice with P301S tau transgenic TAU58 mice and subjected the mice to behavioral testing and assessed neuropathology. Microglial activation states were determined using cytometry by of flight (CyTOF) and quantitative PCR. Tau spreading was assessed in vivo using tracing of focal tau expression.Results. Trem2 depletion significantly aggravated tau-induced early-onset motor and behavioural deficits. Neuropathologically, Trem2 reduction increased the number of hyperphosphorylated tau lesions in young TAU58 brains and reduced disease-associated microglia. Direct assessment of inter-neuronal spread of tau in vivo revealed significantly enhanced propagation of tau in the absence of Trem2 , suggesting that microglial TREM2 limits the progression of tau pathology in disease.Conclusion. Taken together, our data suggests that reduced TREM2 function accelerates the onset and progression of functional deficits and tau neuropathology in tau transgenic mice, which is - at least in part - due to increased tau spreading. Therefore, reduced TREM2 function may contribute to early AD by augmenting tau toxicity and its inter-neuronal propagation.


2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Alanna Strong ◽  
Qiurong Ding ◽  
Andrew Edmondson ◽  
Sumeet Khetarpal ◽  
Carlos Morales ◽  
...  

Sortilin, the protein product of the SORT1 gene, is a multi-ligand sorting receptor involved in Golgi to lysosome and plasma membrane to lysosome protein trafficking. Genome wide association studies for lipid traits have identified the 1p13 locus harboring the SORT1 gene as strongly associated both with plasma low-density lipoprotein cholesterol (LDL-C) and myocardial infarction (MI) risk in humans. Adeno-associated virus (AAV)-mediated hepatic sortilin overexpression in LDL receptor deficient mice reduced plasma cholesterol by 30% at two weeks ( n = 6 mice per group, P = 0.02), with a concomitant reduction in LDL-C. In vivo VLDL production studies demonstrated a 50% reduction in the VLDL triglyceride secretion rate ( P = 0.007) and a 50% reduction in apoB secretion ( P = 0.02) with sortilin overexpression. In vivo LDL turnover studies demonstrated a 3-fold increase in the LDL fractional catabolic rate (FCR) with sortilin overexpression ( n = 6 mice per group, P = 0.00002). Sortilin deficiency both alone and on an LDL receptor deficient background led to a 40% and 50% reduction in FCR ( n = 6 mice per group, P = 0.002 and P = 0.01). The effect of sortilin on both VLDL secretion and LDL turnover is dependent on the ability of sortilin to traffic to the lysosome, as sortilin mutants that cannot traffic to the lysosome do not affect VLDL secretion or LDL uptake in vivo or in vitro . Surface plasmon reasonance demonstrated a high affinity interaction between sortilin and the apoB in LDL particles at physiological pH with a K d of ∼2 nM, and this affinity virtually disappears at the acidic lysosomal pH. In sum, these data are consistent with a model in which sortilin binds apoB-containing lipoprotein particles in the Golgi apparatus and at the plasma membrane and traffics them to the endolysosomal compartment for degradation, thereby reducing VLDL secretion and facilitating LDL uptake, explaining the strong association of hepatic sortilin overexpression in humans with reduced plasma cholesterol.


2021 ◽  
pp. 1-16
Author(s):  
Masaki Nakano ◽  
Yachiyo Mitsuishi ◽  
Lei Liu ◽  
Naoki Watanabe ◽  
Emi Hibino ◽  
...  

Background: Brain amyloid-β (Aβ) peptide is released into the interstitial fluid (ISF) in a neuronal activity-dependent manner, and Aβ deposition in Alzheimer’s disease (AD) is linked to baseline neuronal activity. Although the intrinsic mechanism for Aβ generation remains to be elucidated, interleukin-like epithelial-mesenchymal transition inducer (ILEI) is a candidate for an endogenous Aβ suppressor. Objective: This study aimed to access the mechanism underlying ILEI secretion and its effect on Aβ production in the brain. Methods: ILEI and Aβ levels in the cerebral cortex were monitored using a newly developed ILEI-specific ELISA and in vivo microdialysis in mutant human Aβ precursor protein-knockin mice. ILEI levels in autopsied brains and cerebrospinal fluid (CSF) were measured using ELISA. Results: Extracellular release of ILEI and Aβ was dependent on neuronal activation and specifically on tetanus toxin-sensitive exocytosis of synaptic vesicles. However, simultaneous monitoring of extracellular ILEI and Aβ revealed that a spontaneous fluctuation of ILEI levels appeared to inversely mirror that of Aβ levels. Selective activation and inhibition of synaptic receptors differentially altered these levels. The evoked activation of AMPA-type receptors resulted in opposing changes to ILEI and Aβ levels. Brain ILEI levels were selectively decreased in AD. CSF ILEI concentration correlated with that of Aβ and were reduced in AD and mild cognitive impairment. Conclusion: ILEI and Aβ are released from distinct subpopulations of synaptic terminals in an activity-dependent manner, and ILEI negatively regulates Aβ production in specific synapse types. CSF ILEI might represent a surrogate marker for the accumulation of brain Aβ.


Author(s):  
Fernanda M Bosada ◽  
Mathilde R Rivaud ◽  
Jae-Sun Uhm ◽  
Sander Verheule ◽  
Karel van Duijvenboden ◽  
...  

Rationale: Atrial Fibrillation (AF) is the most common cardiac arrhythmia diagnosed in clinical practice. Genome-wide association studies have identified AF-associated common variants across 100+ genomic loci, but the mechanism underlying the impact of these variant loci on AF susceptibility in vivo has remained largely undefined. One such variant region, highly associated with AF, is found at 1q24, close to PRRX1, encoding the Paired Related Homeobox 1 transcription factor. Objective: To identify the mechanistic link between the variant region at 1q24 and AF predisposition. Methods and Results: The mouse orthologue of the noncoding variant genomic region (R1A) at 1q24 was deleted using CRISPR genome editing. Among the genes sharing the topologically associated domain with the deleted R1A region (Kifap3, Prrx1, Fmo2, Prrc2c), only the broadly expressed gene Prrx1 was downregulated in mutants, and only in cardiomyocytes. Expression and epigenetic profiling revealed that a cardiomyocyte lineage-specific gene program (Mhrt, Myh6, Rbm20, Tnnt2, Ttn, Ckm) was upregulated in R1A-/- atrial cardiomyocytes, and that Mef2 binding motifs were significantly enriched at differentially accessible chromatin sites. Consistently, Prrx1 suppressed Mef2-activated enhancer activity in HL-1 cells. Mice heterozygous or homozygous for the R1A deletion were susceptible to atrial arrhythmia induction, had atrial conduction slowing and more irregular RR intervals. Isolated R1A-/- mouse left atrial cardiomyocytes showed lower action potential upstroke velocities and sodium current, as well as increased systolic and diastolic calcium concentrations compared to controls. Conclusions: The noncoding AF variant region at 1q24 modulates Prrx1 expression in cardiomyocytes. Cardiomyocyte-specific reduction of Prrx1 expression upon deletion of the noncoding region leads to a profound induction of a cardiac lineage-specific gene program and to propensity for AF. These data indicate that AF-associated variants in humans may exert AF predisposition through reduced PRRX1 expression in cardiomyocytes.


Author(s):  
Melissa Conti Mazza ◽  
Victoria Nguyen ◽  
Alexandra Beilina ◽  
Jinhui Ding ◽  
Mark R. Cookson

AbstractCoding mutations in the LRRK2 gene, encoding for a large protein kinase, have been shown to cause familial Parkinson’s disease (PD). The immediate biological consequence of LRRK2 mutations is to increase kinase activity, leading to the suggestion that inhibition of this enzyme might be useful therapeutically to slow disease progression. Genome-wide association studies have identified the chromosomal loci around LRRK2 and one of its proposed substrates, RAB29, as contributors towards the lifetime risk of sporadic PD. Considering the evidence for interactions between LRRK2 and RAB29 on the genetic and protein levels, here we generated a double knockout mouse model and determined whether there are any consequences on brain function with aging. From a battery of motor and non-motor behavioral tests, we noted only that 18-24 month Rab29-/- and double (Lrrk2-/-/Rab29-/-) knockout mice had diminished locomotor behavior in open field compared to wildtype mice. However, no genotype differences were seen in number of substantia nigra pars compacta (SNc) dopamine neurons or in tyrosine hydroxylase levels in the SNc and striatum, which might reflect a PD-like pathology. These results suggest that depletion of both Lrrk2 and Rab29 is tolerated, at least in mice, and support that this pathway might be able to be safely targeted for therapeutics in humans.Significance statementGenetic variation in LRRK2 that result in elevated kinase activity can cause Parkinson’s disease (PD), suggesting LRRK2 inhibition as a therapeutic strategy. RAB29, a substrate of LRRK2, has also been associated with increased PD risk. Evidence exists for an interactive relationship between LRRK2 and RAB29. Mouse models lacking either LRRK2 or RAB29 do not show brain pathologies. We hypothesized that the loss of both targets would result in additive effects across in vivo and post-mortem assessments in aging mice. We found that loss of both LRRK2 and RAB29 did not result in significant behavioral deficits or dopamine neuron loss. This evidence suggests that chronic inhibition of this pathway should be tolerated clinically.


2021 ◽  
Vol 12 ◽  
Author(s):  
Martina Rauner ◽  
Ines Foessl ◽  
Melissa M. Formosa ◽  
Erika Kague ◽  
Vid Prijatelj ◽  
...  

The availability of large human datasets for genome-wide association studies (GWAS) and the advancement of sequencing technologies have boosted the identification of genetic variants in complex and rare diseases in the skeletal field. Yet, interpreting results from human association studies remains a challenge. To bridge the gap between genetic association and causality, a systematic functional investigation is necessary. Multiple unknowns exist for putative causal genes, including cellular localization of the molecular function. Intermediate traits (“endophenotypes”), e.g. molecular quantitative trait loci (molQTLs), are needed to identify mechanisms of underlying associations. Furthermore, index variants often reside in non-coding regions of the genome, therefore challenging for interpretation. Knowledge of non-coding variance (e.g. ncRNAs), repetitive sequences, and regulatory interactions between enhancers and their target genes is central for understanding causal genes in skeletal conditions. Animal models with deep skeletal phenotyping and cell culture models have already facilitated fine mapping of some association signals, elucidated gene mechanisms, and revealed disease-relevant biology. However, to accelerate research towards bridging the current gap between association and causality in skeletal diseases, alternative in vivo platforms need to be used and developed in parallel with the current -omics and traditional in vivo resources. Therefore, we argue that as a field we need to establish resource-sharing standards to collectively address complex research questions. These standards will promote data integration from various -omics technologies and functional dissection of human complex traits. In this mission statement, we review the current available resources and as a group propose a consensus to facilitate resource sharing using existing and future resources. Such coordination efforts will maximize the acquisition of knowledge from different approaches and thus reduce redundancy and duplication of resources. These measures will help to understand the pathogenesis of osteoporosis and other skeletal diseases towards defining new and more efficient therapeutic targets.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ivy Aneas ◽  
Donna C. Decker ◽  
Chanie L. Howard ◽  
Débora R. Sobreira ◽  
Noboru J. Sakabe ◽  
...  

AbstractGenome-wide association studies (GWAS) have implicated the IL33 locus in asthma, but the underlying mechanisms remain unclear. Here, we identify a 5 kb region within the GWAS-defined segment that acts as an enhancer-blocking element in vivo and in vitro. Chromatin conformation capture showed that this 5 kb region loops to the IL33 promoter, potentially regulating its expression. We show that the asthma-associated single nucleotide polymorphism (SNP) rs1888909, located within the 5 kb region, is associated with IL33 gene expression in human airway epithelial cells and IL-33 protein expression in human plasma, potentially through differential binding of OCT-1 (POU2F1) to the asthma-risk allele. Our data demonstrate that asthma-associated variants at the IL33 locus mediate allele-specific regulatory activity and IL33 expression, providing a mechanism through which a regulatory SNP contributes to genetic risk of asthma.


Sign in / Sign up

Export Citation Format

Share Document