scholarly journals Genomic analyses provide insights into peach local adaptation and responses to climate change

2020 ◽  
Author(s):  
Yong Li ◽  
Ke Cao ◽  
Nan Li ◽  
Gengrui Zhu ◽  
Weichao Fang ◽  
...  

The environment has constantly shaped plant genomes, but the genetic bases underlying how plants adapt to environmental influences remain largely unknown. We constructed a high-density genomic variation map by re-sequencing genomes of 263 geographically representative peach landraces and wild relatives. A combination of whole-genome selection scans and genome-wide environmental association studies (GWEAS) was performed to reveal the genomic bases of peach local adaptation to diverse climates comprehensively. A total of 2,092 selective sweeps that underlie local adaptation to both mild and extreme climates were identified, including 339 sweeps conferring genomic pattern of adaptation to high altitudes. Using GWEAS, a total of 3,496 genomic loci strongly associated with 51 specific environmental variables were detected. The molecular mechanism underlying adaptive evolution of high drought, strong UV-B, cold hardiness, sugar content, flesh color, and bloom date were revealed. Finally, based on 30 years of observation, a candidate gene associated with bloom date advance, representing peach responses to global warming, was identified. Collectively, our study provides insights into molecular bases of how environments have shaped peach genomes by natural selection and adds valuable genome resources and candidate genes for future studies on evolutionary genetics, adaptation to climate changes, and future breeding.

2021 ◽  
Author(s):  
Zhishuang Yang ◽  
Xueqin Yang ◽  
Mingshu Wang ◽  
Renyong Jia ◽  
Shun Chen ◽  
...  

The disease caused by Riemerella anatipestifer (R. anatipestifer) causes large economic losses to the global duck industry every year. Serotype-related genomic variation (such as in O-antigen and capsular polysaccharide gene clusters) has been widely used for the serotyping in many gram-negative bacteria. To date, there have been few studies focused on genetic basis of serotypes in R. anatipestifer. Here, we used pan-genome-wide association studies (Pan-GWAS) to identify the serotype-specific genetic loci of 38 R. anatipestifers strain. Analyses of the loci of 11 serotypes showed that the loci could be well mapped with the serotypes of the corresponding strains. We constructed the knockout strain for the wzy gene at the locus, and the results showed that the mutant lost the agglutination characteristics to positive antisera. Based on the of Pan-GWAS results, we developed a multiple PCR method to identify serotypes 1, 2, and 11 of R. anatipestifer. Our study provides a precedent for systematically analysing the genetic basis of the R anatipestifer serotypes and establishing a complete serotyping system in the future.


2018 ◽  
Author(s):  
Yann XC Bourgeois ◽  
Joris AM Bertrand ◽  
Boris Delahaie ◽  
Hélène Holota ◽  
Christophe Thébaud ◽  
...  

AbstractRecently diverged taxa showing marked phenotypic and ecological diversity are optimal systems to test the relative importance of two major evolutionary mechanisms, adaptation to local ecological conditions by natural selection, or mechanisms of reproductive isolation such as assortative mating mediated by sexually selected mating signals or post-zygotic incompatibilities. Whereas local adaptation is expected to affect many loci throughout the genome, traits acting as mating signals are expected to be located on sex chromosomes and have a simple genetic basis. We used genome-wide markers to test these predictions in Reunion Island’s gray-white eye (Zosterops borbonicus), which has recently diversified into five distinct plumage forms. Two of them correspond to a polymorphic highland population that is separated by a steep ecological gradient from three distinct lowland forms that show narrow contact zones in plumage color traits, yet no association with environmental variables. An analysis of population structure using genome-wide SNP loci revealed two major clades corresponding to highland and lowland forms, respectively, with the latter separated further into three independent lineages corresponding to plumage forms. Coalescent tests of alternative demographic scenarios provided support for divergence of highland and lowland lineages with an intensification of gene flow in the last 60,000 years. Landscapes of genomic variation revealed that signatures of selection associated with elevation are found at multiple regions across the genome, whereas most loci associated with the lowland forms are located on the Z sex chromosome. A gene ontology analysis identified TYRP1, a Z-linked color gene, as a likely candidate locus underlying color variation among lowland forms. Our results are consistent with the role of natural selection in driving the divergence of locally adapted highland populations, and the role of sexual selection in differentiating lowland forms through reproductive isolation mechanisms, showing that both modes of lineage divergence can take place at very small geographic scales in birds.


2021 ◽  
Author(s):  
Tomas W Fitzgerald ◽  
Ewan Birney

Copy number variation (CNV) has long been known to influence human traits having a rich history of research into common and rare genetic disease and although CNV is accepted as an important class of genomic variation, progress on copy number (CN) phenotype associations from Next Generation Sequencing data (NGS) has been limited, in part, due to the relative difficulty in CNV detection and an enrichment for large numbers of false positives. To date most successful CN genome wide association studies (CN-GWAS) have focused on using predictive measures of dosage intolerance or gene burden tests to gain sufficient power for detecting CN effects. Here we present a novel method for large scale CN analysis from NGS data generating robust CN estimates and allowing CN-GWAS to be performed genome wide in discovery mode. We provide a detailed analysis in the large scale UK BioBank resource and a specifically designed software package for deriving CN estimates from NGS data that are robust enough to be used for CN-GWAS. We use these methods to perform genome wide CN-GWAS analysis across 78 human traits discovering 862 genetic associations that are likely to contribute strongly to trait distributions based solely on their CN or by acting in concert with other genetic variation. Finally, we undertake an analysis comparing CNV and SNP association signals across the same traits and samples, defining specific CNV association classes based on whether they could be detected using standard SNP-GWAS in the UK Biobank.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Manu J Dubin ◽  
Pei Zhang ◽  
Dazhe Meng ◽  
Marie-Stanislas Remigereau ◽  
Edward J Osborne ◽  
...  

Epigenome modulation potentially provides a mechanism for organisms to adapt, within and between generations. However, neither the extent to which this occurs, nor the mechanisms involved are known. Here we investigate DNA methylation variation in Swedish Arabidopsis thaliana accessions grown at two different temperatures. Environmental effects were limited to transposons, where CHH methylation was found to increase with temperature. Genome-wide association studies (GWAS) revealed that the extensive CHH methylation variation was strongly associated with genetic variants in both cis and trans, including a major trans-association close to the DNA methyltransferase CMT2. Unlike CHH methylation, CpG gene body methylation (GBM) was not affected by growth temperature, but was instead correlated with the latitude of origin. Accessions from colder regions had higher levels of GBM for a significant fraction of the genome, and this was associated with increased transcription for the genes affected. GWAS revealed that this effect was largely due to trans-acting loci, many of which showed evidence of local adaptation.


Heart ◽  
2017 ◽  
Vol 104 (3) ◽  
pp. 201-206 ◽  
Author(s):  
Aneesh Bapat ◽  
Christopher D Anderson ◽  
Patrick T Ellinor ◽  
Steven A Lubitz

Atrial fibrillation (AF) is a prevalent arrhythmia associated with substantial morbidity, mortality and costs. Available management strategies generally have limited efficacy and are associated with potential adverse effects. In part, the limited efficacy of approaches to managing AF reflect an incomplete understanding of the biological mechanisms underlying the arrhythmia, and only a partial understanding of how best to individualise management. Over the last several decades, a greater understanding of genome biology has led to recognition of a widespread genetic susceptibility to AF. Through genome-wide association studies, at least 30 genetic loci have been identified in association with AF, most of which implicate mechanisms not previously appreciated to be involved in the development of AF. We now recognise that AF is a polygenic condition, yet a great deal of work lies ahead to better understand the precise mechanisms by which genomic variation causes AF. Understanding the genetic basis of AF could provide a better understanding of AF mechanisms and cardiovascular biology, inform the management of patients through risk-guided approaches and facilitate the development of novel therapeutics.


2020 ◽  
Vol 10 (2) ◽  
pp. 26 ◽  
Author(s):  
Valeria D’Argenio ◽  
Daniela Sarnataro

Like several neurodegenerative disorders, such as Prion and Parkinson diseases, Alzheimer’s disease (AD) is characterized by spreading mechanism of aggregated proteins in the brain in a typical “prion-like” manner. Recent genetic studies have identified in four genes associated with inherited AD (amyloid precursor protein-APP, Presenilin-1, Presenilin-2 and Apolipoprotein E), rare mutations which cause dysregulation of APP processing and alterations of folding of the derived amyloid beta peptide (Aβ). Accumulation and aggregation of Aβ in the brain can trigger a series of intracellular events, including hyperphosphorylation of tau protein, leading to the pathological features of AD. However, mutations in these four genes account for a small of the total genetic risk for familial AD (FAD). Genome-wide association studies have recently led to the identification of additional AD candidate genes. Here, we review an update of well-established, highly penetrant FAD-causing genes with correlation to the protein misfolding pathway, and novel emerging candidate FAD genes, as well as inherited risk factors. Knowledge of these genes and of their correlated biochemical cascade will provide several potential targets for treatment of AD and aging-related disorders.


Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1281 ◽  
Author(s):  
Ji-Han Xia ◽  
Gong-Hong Wei

Spatiotemporal patterns of gene expression depend on enhancer elements and other factors during individual development and disease progression. The rapid progress of high-throughput techniques has led to well-defined enhancer chromatin properties. Various genome-wide methods have revealed a large number of enhancers and the discovery of three-dimensional (3D) genome architecture showing the distant interacting mechanisms of enhancers that loop to target gene promoters. Whole genome sequencing projects directed at cancer have led to the discovery of substantial enhancer dysfunction in misregulating gene expression and in tumor initiation and progression. Results from genome-wide association studies (GWAS) combined with functional genomics analyses have elucidated the functional impacts of many cancer risk-associated variants that are enriched within the enhancer regions of chromatin. Risk variants dysregulate the expression of enhancer variant-associated genes via 3D genomic interactions. Moreover, these enhancer variants often alter the chromatin binding affinity for cancer-relevant transcription factors, which in turn leads to aberrant expression of the genes associated with cancer susceptibility. In this review, we investigate the extent to which these genetic regulatory circuits affect cancer predisposition and how the recent development of genome-editing methods have enabled the determination of the impacts of genomic variation and alteration on cancer phenotype, which will eventually lead to better management plans and treatment responses to human cancer in the clinic.


Author(s):  
Congcong Li ◽  
Genping Wang ◽  
Haiquan Li ◽  
Guoliang Wang ◽  
Jian Ma ◽  
...  

Abstract Key message Based on the high-density variation map, we identified genome-level evidence for local adaptation and demonstrated that Siprr37 with transposon insertion contributes to the fitness of foxtail millet in the northeastern ecoregion. Abstract Adaptation is a robust way through which plants are able to overcome environmental constraints. The mechanisms of adaptation in heterogeneous natural environments are largely unknown. Deciphering the genomic basis of local adaptation will contribute to further improvement in domesticated plants. To this end, we describe a high-depth (19.4 ×) haplotype map of 3.02 million single nucleotide polymorphisms in foxtail millet (Setaria italica) from whole-genome resequencing of 312 accessions. In the genome-wide scan, we identified a set of improvement signals (including the homologous gene of OsIPA1, a key gene controlling ideal plant architecture) related to the geographical adaptation to four ecoregions in China. In particular, based on the genome-wide association analysis results, we identified the contribution of a pseudo-response regulator gene, SiPRR37, to heading date adaptation in foxtail millet. We observed the expression changes of SiPRR37 resulted from a key Tc1–Mariner transposon insertion in the first intron. Positive selection analyses revealed that SiPRR37 mainly contributed to the adaptation of northeastern ecoregions. Taken together, foxtail millet adapted to the northeastern region by regulating the function of SiPRR37, which sheds lights on genome-level evidence for adaptive geographical divergence. Besides, our data provide a nearly complete catalog of genomic variation aiding the identification of functionally important variants.


2019 ◽  
Author(s):  
Bastian Schiffthaler ◽  
Nicolas Delhomme ◽  
Carolina Bernhardsson ◽  
Jerry Jenkins ◽  
Stefan Jansson ◽  
...  

ABSTRACTThe genome assembly of the European aspen Populus tremula proved difficult for a short-read based strategy due to high genomic variation. As a consequence, the fragmented sequence is impeding studies that benefit from highly contiguous data, particularly genome-wide association studies (GWAS) and comparative genomics. Here we present an updated assembly based on long-read sequences, optical mapping and genetic mapping. This assembly - henceforth referred to as Potra V2 - is assembled into 19 contiguous chromosomes which provides a powerful tool for future association studies. The genome sequence and any feature files are available from the PopGenIE resource.


Sign in / Sign up

Export Citation Format

Share Document