Functional interaction between Fanconi anemia and mTOR pathways during stalled replication fork recovery

2020 ◽  
Author(s):  
Matthew Nolan ◽  
Kenneth Knudson ◽  
Marina K Holz ◽  
Indrajit Chaudhury

We have previously demonstrated that Fanconi Anemia (FA) proteins work in concert with other FA and non-FA proteins to mediate stalled replication fork restart. Previous studies suggest a connection between FA protein FANCD2 and a non-FA protein mechanistic target of rapamycin (mTOR). A recent study showed that mTOR is involved in actin-dependent DNA replication fork restart, suggesting possible roles in FA DNA repair pathway. In this study, we demonstrate that during replication stress mTOR interacts and cooperates with FANCD2 to provide cellular stability, mediates stalled replication fork restart and prevents nucleolytic degradation of the nascent DNA strands. Taken together, this study unravels a novel functional cross-talk between two important mechanisms: mTOR and FA DNA repair pathways that ensure genomic stability.

2018 ◽  
Vol 20 (1) ◽  
pp. 74 ◽  
Author(s):  
Guido Keijzers ◽  
Daniela Bakula ◽  
Michael Petr ◽  
Nils Madsen ◽  
Amanuel Teklu ◽  
...  

Human exonuclease 1 (EXO1), a 5′→3′ exonuclease, contributes to the regulation of the cell cycle checkpoints, replication fork maintenance, and post replicative DNA repair pathways. These processes are required for the resolution of stalled or blocked DNA replication that can lead to replication stress and potential collapse of the replication fork. Failure to restart the DNA replication process can result in double-strand breaks, cell-cycle arrest, cell death, or cellular transformation. In this review, we summarize the involvement of EXO1 in the replication, DNA repair pathways, cell cycle checkpoints, and the link between EXO1 and cancer.


Oncogenesis ◽  
2021 ◽  
Vol 10 (7) ◽  
Author(s):  
YingYing He ◽  
Zhicheng He ◽  
Jian Lin ◽  
Cheng Chen ◽  
Yuanzhi Chen ◽  
...  

AbstractThe C-terminal binding proteins (CtBPs), CtBP1 and CtBP2, are transcriptional co-repressor that interacts with multiple transcriptional factors to modulate the stability of chromatin. CtBP proteins were identified with overexpression in the high-grade serous ovarian carcinoma (HGSOC). However, little is known about CtBP proteins’ regulatory roles in genomic stability and DNA repair in HGSOC. In this study, we combined whole-transcriptome analysis with multiple research methods to investigate the role of CtBP1/2 in genomic stability. Several key functional pathways were significantly enriched through whole transcription profile analysis of CtBP1/2 knockdown SKOV3 cells, including DNA damage repair, apoptosis, and cell cycle. CtBP1/2 knockdown induced cancer cell apoptosis, increased genetic instability, and enhanced the sensitivity to DNA damage agents, such as γ-irradiation and chemotherapy drug (Carboplatin and etoposide). The results of DNA fiber assay revealed that CtBP1/2 contribute differentially to the integrity of DNA replication track and stability of DNA replication recovery. CtBP1 protects the integrity of stalled forks under metabolic stress condition during prolonged periods of replication, whereas CtBP2 acts a dominant role in stability of DNA replication recovery. Furthermore, CtBP1/2 knockdown shifted the DSBs repair pathway from homologous recombination (HR) to non-homologous end joining (NHEJ) and activated DNA-PK in SKOV3 cells. Interesting, blast through TCGA tumor cases, patients with CtBP2 genetic alternation had a significantly longer overall survival time than unaltered patients. Together, these results revealed that CtBP1/2 play a different regulatory role in genomic stability and DSBs repair pathway bias in serous ovarian cancer cells. It is possible to generate novel potential targeted therapy strategy and translational application for serous ovarian carcinoma patients with a predictable better clinical outcome.


2015 ◽  
Vol 20 (7) ◽  
pp. 829-841 ◽  
Author(s):  
Rachel Doherty ◽  
Srinivasan Madhusudan

Genomic DNA is constantly exposed to endogenous and exogenous damaging agents. To overcome these damaging effects and maintain genomic stability, cells have robust coping mechanisms in place, including repair of the damaged DNA. There are a number of DNA repair pathways available to cells dependent on the type of damage induced. The removal of damaged DNA is essential to allow successful repair. Removal of DNA strands is achieved by nucleases. Exonucleases are those that progressively cut from DNA ends, and endonucleases make single incisions within strands of DNA. This review focuses on the group of endonucleases involved in DNA repair pathways, their mechanistic functions, roles in cancer development, and how targeting these enzymes is proving to be an exciting new strategy for personalized therapy in cancer.


2020 ◽  
Vol 20 (9) ◽  
pp. 779-787
Author(s):  
Kajal Ghosal ◽  
Christian Agatemor ◽  
Richard I. Han ◽  
Amy T. Ku ◽  
Sabu Thomas ◽  
...  

Chemotherapy employs anti-cancer drugs to stop the growth of cancerous cells, but one common obstacle to the success is the development of chemoresistance, which leads to failure of the previously effective anti-cancer drugs. Resistance arises from different mechanistic pathways, and in this critical review, we focus on the Fanconi Anemia (FA) pathway in chemoresistance. This pathway has yet to be intensively researched by mainstream cancer researchers. This review aims to inspire a new thrust toward the contribution of the FA pathway to drug resistance in cancer. We believe an indepth understanding of this pathway will open new frontiers to effectively treat drug-resistant cancer.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. TPS5597-TPS5597
Author(s):  
John Paul Diaz ◽  
Wenrui Duan ◽  
Eric Schroeder ◽  
Zuanel Diaz ◽  
Nicholas Lambrou ◽  
...  

TPS5597 Background: Immunotherapy has improved outcomes for patients with recurrent or metastatic cervical cancer whose tumors express PD-L1. Pembrolizumab (PEM), a monoclonal antibody that binds to programmed cell death 1 (PD 1) receptor, inhibits interaction with programmed cell death ligand 1 (PD-L1) and programmed cell death ligand 2 (PD-L2). It is approved for the treatment of recurrent or metastatic cervical cancer. Despite promising results, new strategies are being developed to improve immunotherapy responses. This includes DNA-damaging agents that have the potential to enhance the response to immunotherapy by promoting neo-antigen release, increasing tumor mutational burden, and enhancing PD-L1 expression. Poly-ADP-ribose polymerase (PARP) inhibitors, such as olaparib, have shown synergy with immunotherapy in preclinical and early clinical studies. PARP-based therapy is based on the inhibition of single-strand DNA repair, leading to DNA damage and increased tumor mutational burden. As a result, the tumor becomes a more attractive target for immunotherapy. Based on this, we are investigating the interplay between homologous recombination (HR) repair deficiency, another mechanism of DNA repair, and solid tumor response to ICI. Our approach uses an all-inclusive functional immunofluorescence assay of the Fanconi Anemia triple-staining immunofluorescence (FATSI) we developed and can be performed in paraffin-embedded tumors. Methods: This is a phase II open-label single center trial evaluating the role of PEM and olaparib in patients with metastatic cervical cancer who have progressed on first-line standard of care chemotherapy. FATSI will be performed in all patients. We hypothesize that FATSI negative tumors will be associated with improved responses. Other eligibility criteria include measurable disease by imaging, 18 years of age or older, and no previous exposure to ICI or PARP inhibitor. The primary objective is to evaluate the immune-related objective response rate (iORR) achieved in patients with FA Repair Pathway functionally competent and functionally deficient tumors. Secondary objectives include 20-week progression free survival and overall survival. Other exploratory objectives include evaluation of the mutation load and markers of neo-antigenicity, T cell receptor clonotype analyses (before and after treatment), and alterations in HR repair genes. We will utilize a two-stage phase II design to detect an iORR ≥ 20% in the whole population tested vs. the null hypothesis that the true iORR ≤5%, represents a response by chance alone or other infrequent unknown mechanisms. An interim analysis requires at least 2 of the first 20 evaluable patients enrolled have an objective response. If this occurs, we will accrue 28 additional patients to total 48. Enrollment is ongoing and two patients are currently on treatment. Clinical trial information: NCT04483544.


2020 ◽  
Author(s):  
Carla Umansky ◽  
Agustín Morellato ◽  
Marco Scheidegger ◽  
Matthias Rieckher ◽  
Manuela R. Martinefski ◽  
...  

AbstractFormaldehyde (FA) is a ubiquitous endogenous and environmental metabolite that is thought to exert cytotoxicity through DNA and DNA-protein crosslinking. We show here that FA can cause cellular damage beyond genotoxicity by triggering oxidative stress, which is prevented by the enzyme alcohol dehydrogenase 5 (ADH5/GSNOR). Mechanistically, we determine that endogenous FA reacts with the redox-active thiol group of glutathione (GSH) forming S-hydroxymethyl-GSH, which is metabolized by ADH5 yielding reduced GSH thus preventing redox disruption. We identify the ADH5-ortholog gene in Caenorhabditis elegans and show that oxidative stress also underlies FA toxicity in nematodes. Moreover, we show that endogenous GSH can protect cells lacking the Fanconi Anemia DNA repair pathway from FA, which might have broad implications for Fanconi Anemia patients and for healthy BRCA2-mutation carriers. We thus establish a highly conserved mechanism through which endogenous FA disrupts the GSH-regulated cellular redox homeostasis that is critical during development and aging.


Sign in / Sign up

Export Citation Format

Share Document