scholarly journals The role of vegetative cell fusions in the lifestyle of the wheat fungal pathogen Zymoseptoria tritici

2020 ◽  
Author(s):  
Carolina Sardinha Francisco ◽  
Maria Manuela Zwyssig ◽  
Javier Palma-Guerrero

AbstractThe ability of fungal cells to undergo cell fusion allows them to maximize their overall fitness. In this study, we characterized the role of the so gene orthologous in Zymoseptoria tritici and the biological contribution of vegetative cell fusions in the lifestyle of this latent necrotrophic fungus. Firstly, we show that Z. tritici undergoes self-fusion between distinct cellular structures and its mechanism is dependent on the initial cell density. Next, the deletion of ZtSo resulted in the loss of cell-to-cell communication affecting both hyphal and germlings fusion. We show that Z. tritici mutants for MAP kinase-encoding ZtSlt2 (orthologous MAK-1) and ZtFus3 (orthologous MAK-2) genes also fail to undergo self-stimulation and self-fusion, demonstrating the functional conservation of this signaling mechanism across species. Additionally, the ΔZtSo mutant was severely impaired in melanization, which leads us to identify a trade-off between fungal growth and melanization. Though it has been proposed that So is a scaffold protein for MAP kinase genes from the CWI pathway, its deletion did not affect the cell wall integrity of the fungus. Finally, we demonstrated that anastomose is dispensable for pathogenicity, but essential for the fruiting body development and its absence abolish the asexual reproduction of Z. tritici. Taken together, our data show that ZtSo is required for fungal development, while vegetative cell fusions are essential for fungal fitness.

2016 ◽  
Vol 113 (42) ◽  
pp. 11877-11882 ◽  
Author(s):  
Martin Weichert ◽  
Alexander Lichius ◽  
Bert-Ewald Priegnitz ◽  
Ulrike Brandt ◽  
Johannes Gottschalk ◽  
...  

Sterols are vital components of eukaryotic cell membranes. Defects in sterol biosynthesis, which result in the accumulation of precursor molecules, are commonly associated with cellular disorders and disease. However, the effects of these sterol precursors on the metabolism, signaling, and behavior of cells are only poorly understood. In this study, we show that the accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain specifically disrupts cell–cell communication and fusion in the fungus Neurospora crassa. Genetically identical germinating spores of this fungus undergo cell–cell fusion, thereby forming a highly interconnected supracellular network during colony initiation. Before fusion, the cells use an unusual signaling mechanism that involves the coordinated and alternating switching between signal sending and receiving states of the two fusion partners. Accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain disrupts this coordinated cell–cell communication and suppresses cell fusion. These specific sterol precursors target a single ERK-like mitogen-activated protein (MAP) kinase (MAK-1)-signaling cascade, whereas a second MAP kinase pathway (MAK-2), which is also involved in cell fusion, is unaffected. These observations indicate that a minor specific change in sterol structure can exert a strong detrimental effect on a key signaling pathway of the cell, resulting in the absence of cell fusion.


2020 ◽  
Vol 27 (40) ◽  
pp. 6815-6824 ◽  
Author(s):  
Yuan Jiang ◽  
Chuanshan Xu ◽  
Wingnang Leung ◽  
Mei Lin ◽  
Xiaowen Cai ◽  
...  

Photodynamic Therapy (PDT) is a promising alternative treatment for malignancies based on photochemical reaction induced by Photosensitizers (PS) under light irradiation. Recent studies show that PDT caused the abundant release of exosomes from tumor tissues. It is well-known that exosomes as carriers play an important role in cell-cell communication through transporting many kinds of bioactive molecules (e.g. lipids, proteins, mRNA, miRNA and lncRNA). Therefore, to explore the role of exosomes in photodynamic anticancer therapy has been attracting significant attention. In the present paper, we will briefly introduce the basic principle of PDT and exosomes, and focus on discussing the role of exosomes in photodynamic anticancer therapy, to further enrich and boost the development of PDT.


2020 ◽  
Vol 25 (42) ◽  
pp. 4510-4522 ◽  
Author(s):  
Biancamaria Longoni ◽  
Irene Fasciani ◽  
Shivakumar Kolachalam ◽  
Ilaria Pietrantoni ◽  
Francesco Marampon ◽  
...  

: Exosomes are extracellular vesicles produced by eukaryotic cells that are also found in most biological fluids and tissues. While they were initially thought to act as compartments for removal of cellular debris, they are now recognized as important tools for cell-to-cell communication and for the transfer of pathogens between the cells. They have attracted particular interest in neurodegenerative diseases for their potential role in transferring prion-like proteins between neurons, and in Parkinson’s disease (PD), they have been shown to spread oligomers of α-synuclein in the brain accelerating the progression of this pathology. A potential neuroprotective role of exosomes has also been equally proposed in PD as they could limit the toxicity of α-synuclein by clearing them out of the cells. Exosomes have also attracted considerable attention for use as drug vehicles. Being nonimmunogenic in nature, they provide an unprecedented opportunity to enhance the delivery of incorporated drugs to target cells. In this review, we discuss current knowledge about the potential neurotoxic and neuroprotective role of exosomes and their potential application as drug delivery systems in PD.


Author(s):  
Hariharan Jayaraman ◽  
Nalinkanth V. Ghone ◽  
Ranjith Kumaran R ◽  
Himanshu Dashora

: Mesenchymal stem cells because of its high proliferation, differentiation, regenerative capacity, and ease of availability have been a popular choice in cytotherapy. Mesenchymal Stem Cells (MSCs) have a natural tendency to home in a tumor microenvironment and acts against it, owing to the similarity of the latter to an injured tissue environment. Several studies have confirmed the recruitment of MSCs by tumor through various cytokine signaling that brings about phenotypic changes to cancer cells, thereby promoting migration, invasion, and adhesion of cancer cells. The contrasting results on MSCs as a tool for cancer cytotherapy may be due to the complex cell to cell interaction in the tumor microenvironment, which involves various cell types such as cancer cells, immune cells, endothelial cells, and cancer stem cells. Cell to cell communication can be simple or complex and it is transmitted through various cytokines among multiple cell phenotypes, mechano-elasticity of the extra-cellular matrix surrounding the cancer cells, and hypoxic environments. In this article, the role of the extra-cellular matrix proteins and soluble mediators that acts as communicators between mesenchymal stem cells and cancer cells has been reviewed specifically for breast cancer, as it is the leading member of cancer malignancies. The comprehensive information may be beneficial in finding a new combinatorial cytotherapeutic strategy using MSCs by exploiting the cross-talk between mesenchymal stem cells and cancer cells for treating breast cancer.


2009 ◽  
Vol 22 (2) ◽  
pp. 109-124 ◽  
Author(s):  
Zaher A. Radi ◽  
Rosemary A. Marusak ◽  
Dale L. Morris

Sign in / Sign up

Export Citation Format

Share Document