scholarly journals LAG3 is a Central Regulator of NK Cell Cytokine Production

Author(s):  
Sriram Narayanan ◽  
Patricia J. Ahl ◽  
Veonice Au Bijin ◽  
Nivashini Kaliaperumal ◽  
Seng Gee Lim ◽  
...  

AbstractNatural killer (NK) cells are innate effectors, which play a crucial role in controlling viral infections. Administration of IFN-α has shown promising results as a therapeutic, controlling HIV, and chronic viral hepatitis. However the downstream mechanisms by which IFN-α mediates its anti-viral effects is largely unknown. In this investigation, we evaluated the impact of IFN-α on peripheral blood NK cells from healthy donors. High dimensional flow cytometry analysis of NK cell surface receptors following exposure to IFN-α showed an increased expression of the check point inhibitor LAG3. Further characterization revealed that LAG3 was expressed in a subset of NK cells with high expression of activation and maturation markers. Assessment of metabolic pathways showed that LAG3+ NK cells had enhanced rates of glycolysis and glycolytic capacity, suggesting that it is a primed effector subset with enhanced glucose metabolism. Inhibition of LAG3 on NK cells using antibody in vitro resulted in a profound increase in secretion of cytokines IFN-γ, TNF-α, MIP-1α and MIP-1β, without affecting the cytotoxic activity. Taken together, these results showed that LAG3 is a negative regulator of cytokine production by mature NK cells.

Blood ◽  
1994 ◽  
Vol 84 (3) ◽  
pp. 841-846 ◽  
Author(s):  
MR Silva ◽  
R Hoffman ◽  
EF Srour ◽  
JL Ascensao

Abstract Human natural killer (NK) cells comprise 10% to 15% of peripheral blood mononuclear cells and have an important role in immune responses against tumors, viral infections, and graft rejection. NK cells originate in bone marrow (BM), but their progenitors and lineage development have not been completely characterized. We studied the generation of NK cells from purified CD34+HLADR- and CD34+HLADR+ BM progenitors and the influence of various cytokines on their production. We show that CD3-CD56+ cytotoxic NK cells can develop from both progenitors populations when interleukin-2 (IL-2) is present in an in vitro suspension culture system containing IL-1 alpha and stem cell factor. Up to 83.8% and 98.6% CD3-CD56+ cells were detected in CD34+HLADR- and CD34+DR+ cultures, respectively, after 5 weeks of culture; significant numbers of NK cells were first detected after 2 weeks. Cytotoxic activity paralleled NK cell numbers; up to 70% specific lysis at an effector:target ratio of 10:1 was observed at 5 weeks. IL-7 also triggered development of CD3-CD56+ cells from these immature progenitors (up to 24% and 55% appeared in CD34+HLADR- and CD34+HLADR+ cultures, respectively). Our data suggest that BM stromas are not necessary for NK cell development and that IL-2 remains essential for this lineage development and differentiation.


Cancers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 573 ◽  
Author(s):  
Donal O’Shea ◽  
Andrew E. Hogan

Natural killer (NK) cells are a population of lymphocytes which classically form part of the innate immune system. They are defined as innate lymphocytes, due to their ability to kill infected or transformed cells without prior activation. In addition to their cytotoxic abilities, NK cells are also rapid producers of inflammatory cytokines such as interferon gamma (IFN-γ) and are therefore a critical component of early immune responses. Due to these unique abilities, NK cells are a very important component of host protection, especially anti-tumour and anti-viral immunity. Obesity is a worldwide epidemic, with over 600 million adults and 124 million children now classified as obese. It is well established that individuals who are obese are at a higher risk of many acute and chronic conditions, including cancer and viral infections. Over the past 10 years, many studies have investigated the impact of obesity on NK cell biology, detailing systemic dysregulation of NK cell functions. More recently, several studies have investigated the role of NK cells in the homeostasis of adipose tissue and the pathophysiology of obesity. In this review, we will discuss in detail these studies and focus on emerging data detailing the metabolic mechanisms altering NK cells in obesity.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1310-1310
Author(s):  
Andreas Lundqvist ◽  
Leigh Samsel ◽  
Michael Eckhaus ◽  
Ramaprasad Srinivasan ◽  
Yoshiyuki Takahashi ◽  
...  

Abstract Retrospective data suggest NK cells play a role in protecting recipients from graft versus host disease (GVHD) in the setting of killer IgG-like receptor (KIR) ligand incompatibility. In humans, this protective effect is most evident with MHC mismatched transplantation, usually following in vivo or in vitro T-cell depletion. In MHC mismatched murine transplant models, lethal GVHD is reduced following the adoptive infusion of KIR ligand mismatched NK cells; it is unknown whether NK cells can mediate similar protective effects following MHC matched transplantation. Therefore, we investigated the impact of adoptively infusing KIR ligand mismatched NK cells on GVHD in an MHC matched T-cell replete murine model of allogeneic transplantation. Balb/C recipient mice underwent allogeneic bone marrow (8 x 106 cells) and splenocyte (15 x 106 cells) transplantation from B10.d2 donors following 950cGy of irradiation. Allogeneic B10.d2 donor NK cells were first isolated by negative depletion using magnetic beads selecting for CD4, CD5, CD8a, CD19, Gr-1 and Ter-119, and then expanded over 4-6 days in vitro in DMEM media containing 10% FCS and 500U/ml of IL-2. NK cell subsets (KIR ligand matched vs. KIR ligand mismatched) were then isolated by flow cytometry into Ly49I/C+ NK cells (KIR ligand mismatched in the GVHD direction for Balb/C recipients) and Ly49A/G+ NK cells (KIR ligand matched for Balb/C recipients). On day +4, recipient mice received a single tail vein injection with either KIR ligand matched, KIR ligand mismatched or unsorted “bulk” NK cells (0.5–1.0 x 106 NK cells). All (9/9) control transplant recipients (no adoptive NK cell infusion) as well as recipients of Ly49A/G (KIR ligand matched) NK cells (13/13) developed skin GVHD, in contrast to 4/7 (57%, p=0.03) recipients of bulk NK cells and only a minority (13% [1/8], p < 0.01) of animals receiving KIR ligand mismatched NK cells. Using a cumulative clinical GVHD scoring system (total score = 9), overall GVHD was decreased in recipients of KIR ligand mismatched NK cells (median score = 0 at day +45) compared to mice that received KIR ligand matched NK cells (median score = 3; p = 0.15) or no NK cells (median score = 3; p= 0.12); no significant difference in survival was observed between cohorts. This murine model provides the first in vivo evidence that adoptively infused KIR ligand mismatched allogeneic NK cells reduce GVHD following T-cell replete MHC matched allogeneic transplantation. The impact of infusing multiple doses of KIR ligand mismatched NK cells on GVHD and their ability to induce a graft-vs-tumor effect in tumor bearing Balb/c mice is currently being evaluated.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4899-4899
Author(s):  
Hisayuki Yokoyama ◽  
Maria Berg ◽  
Andreas Lundqvist ◽  
J. Philip McCoy ◽  
Shivani Srivastava ◽  
...  

Abstract The ability to expand NK cells in vitro has led to the recent initiation of protocols incorporating adoptive NK cell infusions after HCT. Calcineurin inhibitors such as CSA are commonly used to prevent graft versus host disease (GVHD) in HCT recipients. Recently, Hong et al found the phenotype and function of fresh NK cells cultured in vitro with CSA was altered, with CSA treated NK cell cultures having enhanced cytotoxicity against tumor targets. However, the impact of CSA on in vitro expanded NK cell function and phenotype has not been explored. We analyzed cell proliferation, IFN-gamma production, cell surface immunofluorescent staining and cytotoxicity against K562 and renal cell carcinoma cell lines by in vitro expanded vs freshly isolated NK cells cultured in physiological doses of CSA (40ng/ml, 200ng/ml, 1000ng/ml for 18hrs). Fresh NK cells were obtained from the PBMC of healthy donors using immunomagnetic beads to isolate CD56+/ CD3− cells. NK cells were expanded in vitro using irradiated EBV transformed B cells as feeder cells in media containing IL-2 [500U/ml] for 12–14 days. Comparing CSA containing cultures to controls, there was a significant reduction in IL-2 stimulated fresh NK cell proliferation (stimulation index 0.51± 0.1) and TRAIL expression (MFI 10.4 vs 3.01). Furthermore, an ELISA assay showed fresh NK cells treated with CSA had a significant reduction in IL-2 induced IFN-g production compared to controls (median 231 vs 57 pg/ml, p=0.025). In contrast, in vitro expanded NK cells cultured in CSA showed no significant reduction of proliferation or TRAIL expression. At the highest doses of CSA (1000ng/ml), minimal inhibition of K562 killing of freshly isolated NK cells was observed. In contrast, expanded NK cells cultured in CSA for 18 hours compared to controls had a significant reduction in the killing of K562 cells (E:T=10:1, median 66 vs 43% lysis, p=0.011) and RCC tumor cells (E:T=20:1, 14.8 vs 8.8%, p=0.043). Figure Figure These data confirm CSA alters the phenotype and function of CD3−/CD56 + NK cells. Importantly, CSA appears to have a deleterious effect on expanded NK cell tumor cytotoxicity that was not observed with fresh NK cells. These finding suggest the anti-tumor effects of in vitro expanded NK cells could be hindered when adoptively infused in HCT patients receiving CSA.


2001 ◽  
Vol 193 (12) ◽  
pp. 1413-1424 ◽  
Author(s):  
Francesco Colucci ◽  
Eleftheria Rosmaraki ◽  
Søren Bregenholt ◽  
Sandrine I. Samson ◽  
Vincenzo Di Bartolo ◽  
...  

The product of the protooncogene Vav1 participates in multiple signaling pathways and is a critical regulator of antigen–receptor signaling in B and T lymphocytes, but its role during in vivo natural killer (NK) cell differentiation is not known. Here we have studied NK cell development in Vav1−/− mice and found that, in contrast to T and NK-T cells, the absolute numbers of phenotypically mature NK cells were not reduced. Vav1−/− mice produced normal amounts of interferon (IFN)-γ in response to Listeria monocytogenes and controlled early infection but showed reduced tumor clearance in vivo. In vitro stimulation of surface receptors in Vav1−/− NK cells resulted in normal IFN-γ production but reduced tumor cell lysis. Vav1 was found to control activation of extracellular signal-regulated kinases and exocytosis of cytotoxic granules. In contrast, conjugate formation appeared to be only mildly affected, and calcium mobilization was normal in Vav1−/− NK cells. These results highlight fundamental differences between proximal signaling events in T and NK cells and suggest a functional dichotomy for Vav1 in NK cells: a role in cytotoxicity but not for IFN-γ production.


2008 ◽  
Vol 76 (12) ◽  
pp. 5810-5816 ◽  
Author(s):  
Andréa Teixeira-Carvalho ◽  
Ricardo T. Fujiwara ◽  
Erik J. Stemmy ◽  
Denise Olive ◽  
Jesse M. Damsker ◽  
...  

ABSTRACT The impact of the interaction between excreted and/or secreted (ES) Necator americanus products and NK cells from Necator-infected individuals was analyzed. We investigated the binding of ES products to NK cells, the expression of NK cell receptors (CD56, CD159a/NKG2A, CD314/NKG2D, CD335/NKp46, and KLRF1/NKp80), the frequency of gamma interferon (IFN-γ)-producing NK cells after whole-blood in vitro stimulation, and the capacity of N. americanus ES products to induce NK cell chemotaxis. In contrast to those from noninfected individuals, NK cells from Necator-infected individuals demonstrated no binding with N. americanus ES products. This phenomenon was not due to alterations in NK cell receptor expression in infected subjects and could not be reproduced with NK cells from uninfected individuals by incubation with immunoregulatory cytokines (interleukin-10/transforming growth factor β). Further, we found that a significantly greater percentage of NK cells from infected subjects than NK cells from uninfected individuals spontaneously produced IFN-γ upon ex vivo culture. Our findings support a model whereby NK cells from Necator-infected individuals may interact with ES products, making these cells refractory to binding with exogenous ES products. During N. americanus infection, human NK cells are attracted to the site of infection by chemotactic ES products produced by adult Necator worms in the gut mucosa. Binding of ES products causes the NK cells to become activated and secrete IFN-γ locally, thereby contributing to the adult hookworm's ability to evade host immune responses.


Blood ◽  
2004 ◽  
Vol 104 (13) ◽  
pp. 4157-4164 ◽  
Author(s):  
Simona Pisegna ◽  
Gianluca Pirozzi ◽  
Mario Piccoli ◽  
Luigi Frati ◽  
Angela Santoni ◽  
...  

Abstract Natural killer (NK) cells are a component of the innate immunity against viral infections through their rapid cytotoxic activity and cytokine production. Although the synthetic double-stranded (ds) RNA polyinosinic-polycytidylic acid (poly I:C), a mimic of a common product of viral infections, is known to rapidly up-regulate their in vivo functions, NK cell ability to directly respond to dsRNA is still mostly unknown. Our results show that treatment with poly I:C significantly up-regulates both natural and CD16-mediated cytotoxicity of highly purified human NK cells. Poly I:C also induces the novel capability of producing CXCL10 chemokine in human NK cells and synergistically enhances interferon-γ (IFN-γ) production induced by either adaptive or innate cytokines. In accordance with the expression of Toll-like receptor-3 (TLR3) and of TRIF/TICAM-1 adaptor, poly I:C stimulation induces the activation of interferon regulatory factor-3 (IRF-3) transcription factor and of p38 mitogen-activated protein kinase (MAPK) in human NK cells. Finally, we demonstrate that p38 MAPK activity is required for the dsRNA-dependent enhancement of cytotoxicity and CXCL10 production. The occurrence of dsRNA-induced signaling and functional events closely correlates with the TLR3 mRNAprofile in different NK cell populations. Taken together, these data identify p38 as a central component of NK cell ability to directly respond to dsRNA pathogen-associated molecular pattern (PAMP).


2021 ◽  
Vol 218 (4) ◽  
Author(s):  
Sam Sheppard ◽  
Joseph C. Sun

NK cells express a limited number of germline-encoded receptors that identify infected or transformed cells, eliciting cytotoxicity, effector cytokine production, and in some circumstances clonal proliferation and memory. To maximize the functional diversity of NK cells, the array and expression level of surface receptors vary between individual NK cell “clones” in mice and humans. Cytomegalovirus infection in both species can expand a population of NK cells expressing receptors critical to the clearance of infected cells and generate a long-lived memory pool capable of targeting future infection with greater efficacy. Here, we discuss the pathways and factors that regulate the generation and maintenance of effector and memory NK cells and propose how this understanding may be harnessed therapeutically.


2019 ◽  
Vol 96 (10) ◽  
pp. 965-970 ◽  
Author(s):  
Maria S. Blyakher ◽  
E. A. Tulskaya ◽  
I. V. Kapustin ◽  
I. M. Fedorova ◽  
T. K. Lopatina ◽  
...  

The character of the influence of the electromagnetic radiation (EMR) of mobile phone on the activation of lymphocytes in vitro was investigated. This is important, since modern human is exposed to a complex combination of electric and magnetic fields (EMF) of different frequencies. The object of the study were whole venous blood and lymphocytes isolated from 21 adult donors (aged of from 20 to 55 years) - 10 were healthy donors and 11 were healthy persons 7 days after their vaccination with meningococcal polysaccharide vaccine. In the study the influence of phone’s EMR on the functional activity of peripheral blood lymphocytes was determined by the flow cytometry method with the use of monoclonal antibodies of Beckman Coulter company (by the identification and calculation the number of basic and activated lymphocyte subpopulations). The changes of cytokines production by blood cells exposed to mobile phone electromagnetic radiation were determined in supernatants by measuring their concentration using EIA kits produced by JSC “Vector-Best” (Russia) and LLC “cytokine” (Russia). The results of the study of the effects of electromagnetic radiation of mobile phone on blood cells revealed changes in the percentage of lymphocytes carrying the early activation marker CD69 significantly to be more frequently and were observed with greater intensity in the group of donors which were vaccinated compared to healthy donors. Under the influence of phone’s EMR mean values of cytokine production determined in the supernatants samples did not changed in both groups, but in the group of healthy donors mean values of cytokines production were 1,5 - 2 times higher than in the group of persons following immunization. The increase or decrease in cytokine production under the influence of phone’s EMR occurred regardless of the initial level of its production in the surveyed donor. The changes of the cytokine production (IFNγ, TNFα, IL-6 and IL-8) by blood cells under the influence of phone’s EMR happen individually; this should be considered when deciding on the presence or absence of phone’s EMR impact on the status of lymphocytes.


2022 ◽  
Vol 12 ◽  
Author(s):  
Maryam Hejazi ◽  
Congcong Zhang ◽  
Sabrina B. Bennstein ◽  
Vera Balz ◽  
Sarah B. Reusing ◽  
...  

The generation and expansion of functionally competent NK cells in vitro is of great interest for their application in immunotherapy of cancer. Since CD33 constitutes a promising target for immunotherapy of myeloid malignancies, NK cells expressing a CD33-specific chimeric antigen receptor (CAR) were generated. Unexpectedly, we noted that CD33-CAR NK cells could not be efficiently expanded in vitro due to a fratricide-like process in which CD33-CAR NK cells killed other CD33-CAR NK cells that had upregulated CD33 in culture. This upregulation was dependent on the stimulation protocol and encompassed up to 50% of NK cells including CD56dim NK cells that do generally not express CD33 in vivo. RNAseq analysis revealed that upregulation of CD33+ NK cells was accompanied by a unique transcriptional signature combining features of canonical CD56bright (CD117high, CD16low) and CD56dim NK cells (high expression of granzyme B and perforin). CD33+ NK cells exhibited significantly higher mobilization of cytotoxic granula and comparable levels of cytotoxicity against different leukemic target cells compared to the CD33− subset. Moreover, CD33+ NK cells showed superior production of IFNγ and TNFα, whereas CD33− NK cells exerted increased antibody-dependent cellular cytotoxicity (ADCC). In summary, the study delineates a novel functional divergence between NK cell subsets upon in vitro stimulation that is marked by CD33 expression. By choosing suitable stimulation protocols, it is possible to preferentially generate CD33+ NK cells combining efficient target cell killing and cytokine production, or alternatively CD33− NK cells, which produce less cytokines but are more efficient in antibody-dependent applications.


Sign in / Sign up

Export Citation Format

Share Document