scholarly journals Regulatory architecture of the RCA gene cluster captures an intragenic TAD boundary and enhancer elements in B cells

2020 ◽  
Author(s):  
Jessica Cheng ◽  
Joshua S. Clayton ◽  
Rafael D. Acemel ◽  
José L. Gómez-Skarmeta ◽  
Rhonda L. Taylor ◽  
...  

ABSTRACTThe Regulators of Complement Activation (RCA) gene cluster comprises several tandemly arranged genes which share functions in the innate immune system. RCA members, such as complement receptor 2 (CR2), are well-established susceptibility genes in complex autoimmune diseases. Altered expression of RCA genes has been demonstrated at both the functional and genetic level, but the mechanism underlying their regulation are not fully characterised. We aimed to investigate the structural organisation of the RCA gene cluster to identify key regulatory elements that influence the expression of CR2 and other genes in this immunomodulatory region. Using 4C, we captured extensive CTCF-mediated chromatin looping across the RCA gene cluster in B cells and showed these were organised into two topological associated domains (TADs). Interestingly, the inter-TAD boundary was located within the CR1 gene at a well-characterised segmental duplication. Additionally, we mapped numerous gene-gene and gene-enhancer interactions across the region, revealing extensive co-regulation. Importantly, we identified an intergenic enhancer and functionally demonstrated this element upregulates two RCA members (CR2 and CD55) in B cells. We have uncovered novel, long-range mechanisms whereby SLE susceptibility may be influenced by genetic variants, highlighting the important contribution of chromatin topology to gene regulation and complex genetic disease.

2006 ◽  
Vol 80 (2) ◽  
pp. 866-874 ◽  
Author(s):  
Keigo Machida ◽  
Kevin T. H. Cheng ◽  
Vicky M.-H. Sung ◽  
Alexandra M. Levine ◽  
Steven Foung ◽  
...  

ABSTRACT Hepatitis C virus (HCV) induces inflammatory signals, leading to hepatitis, hepatocellular carcinomas, and lymphomas. The mechanism of HCV involvement in the host's innate immune responses has not been well characterized. In this study, we analyzed expression and regulation of the entire panel of toll-like receptors (TLRs) in human B cells following HCV infection in vitro. Among all of the TLRs (TLRs 1 to 10) examined, only TLR4 showed an altered expression (a three- to sevenfold up-regulation) after HCV infection. Peripheral blood mononuclear cells from HCV-infected individuals also showed a higher expression level of TLR4 compared with those of healthy individuals. HCV infection significantly increased beta interferon (IFN-β) and interleukin-6 (IL-6) secretion from B cells, particularly after lipopolysaccharide stimulation. The increased IFN-β and IL-6 production was mediated by TLR4 induction, since the introduction of the small interfering RNA against TLR4 specifically inhibited the HCV-induced cytokine production. Among all of the viral proteins, only NS5A caused TLR4 induction in hepatocytes and B cells. NS5A specifically activated the promoter of the TLR4 gene in both hepatocytes and B cells. In conclusion, HCV infection directly induces TLR4 expression and thereby activates B cells, which may contribute to the host's innate immune responses.


2021 ◽  
Author(s):  
Diogo M Ribeiro ◽  
Chaymae Ziyani ◽  
Olivier Delaneau

Most human genes are co-expressed with a nearby gene. Yet, previous studies only reported this extensive local gene co-expression using bulk RNA-seq. Here, we leverage single cell datasets in >85 individuals to identify gene co-expression across cells, unbiased by cell type heterogeneity and benefiting from the co-occurrence of transcription events in single cells. We discover thousands of co-expressed genes in two cell types and (i) compare single cell to bulk RNA-seq in identifying local gene co-expression, (ii) show that many co-expressed genes – but not the majority – are composed of functionally-related genes and (iii) provide evidence that these genes are transcribed synchronously and their co-expression is maintained up to the protein level. Finally, we identify gene-enhancer associations using multimodal single cell data, which reveal that >95% of co-expressed gene pairs share regulatory elements. Our in-depth view of local gene co-expression and regulatory element co-activity advances our understanding of the shared regulatory architecture between genes.


Immunity ◽  
2011 ◽  
Vol 34 (2) ◽  
pp. 175-187 ◽  
Author(s):  
Anja Ebert ◽  
Shane McManus ◽  
Hiromi Tagoh ◽  
Jasna Medvedovic ◽  
Giorgia Salvagiotto ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1007
Author(s):  
Divya Kattupalli ◽  
Asha Sreenivasan ◽  
Eppurathu Vasudevan Soniya

Black pepper (Piper nigrum L.) is a prominent spice that is an indispensable ingredient in cuisine and traditional medicine. Phytophthora capsici, the causative agent of footrot disease, causes a drastic constraint in P. nigrum cultivation and productivity. To counterattack various biotic and abiotic stresses, plants employ a broad array of mechanisms that includes the accumulation of pathogenesis-related (PR) proteins. Through a genome-wide survey, eleven PR-1 genes that belong to a CAP superfamily protein with a caveolin-binding motif (CBM) and a CAP-derived peptide (CAPE) were identified from P. nigrum. Despite the critical functional domains, PnPR-1 homologs differ in their signal peptide motifs and core amino acid composition in the functional protein domains. The conserved motifs of PnPR-1 proteins were identified using MEME. Most of the PnPR-1 proteins were basic in nature. Secondary and 3D structure analyses of the PnPR-1 proteins were also predicted, which may be linked to a functional role in P. nigrum. The GO and KEGG functional annotations predicted their function in the defense responses of plant-pathogen interactions. Furthermore, a transcriptome-assisted FPKM analysis revealed PnPR-1 genes mapped to the P. nigrum-P. capsici interaction pathway. An altered expression pattern was detected for PnPR-1 transcripts among which a significant upregulation was noted for basic PnPR-1 genes such as CL10113.C1 and Unigene17664. The drastic variation in the transcript levels of CL10113.C1 was further validated through qRT-PCR and it showed a significant upregulation in infected leaf samples compared with the control. A subsequent analysis revealed the structural details, phylogenetic relationships, conserved sequence motifs and critical cis-regulatory elements of PnPR-1 genes. This is the first genome-wide study that identified the role of PR-1 genes during P. nigrum-P. capsici interactions. The detailed in silico experimental analysis revealed the vital role of PnPR-1 genes in regulating the first layer of defense towards a P. capsici infection in Panniyur-1 plants.


2013 ◽  
Vol 368 (1620) ◽  
pp. 20120361 ◽  
Author(s):  
Jim R. Hughes ◽  
Karen M. Lower ◽  
Ian Dunham ◽  
Stephen Taylor ◽  
Marco De Gobbi ◽  
...  

We have combined the circular chromosome conformation capture protocol with high-throughput, genome-wide sequence analysis to characterize the cis -acting regulatory network at a single locus. In contrast to methods which identify large interacting regions (10–1000 kb), the 4C approach provides a comprehensive, high-resolution analysis of a specific locus with the aim of defining, in detail, the cis -regulatory elements controlling a single gene or gene cluster. Using the human α-globin locus as a model, we detected all known local and long-range interactions with this gene cluster. In addition, we identified two interactions with genes located 300 kb (NME4) and 625 kb (FAM173a) from the α-globin cluster.


Blood ◽  
2008 ◽  
Vol 111 (6) ◽  
pp. 3211-3219 ◽  
Author(s):  
Shinichi Kitada ◽  
Christina L. Kress ◽  
Maryla Krajewska ◽  
Lee Jia ◽  
Maurizio Pellecchia ◽  
...  

Abstract Altered expression of Bcl-2 family proteins plays central roles in apoptosis dysregulation in cancer and leukemia, promoting malignant cell expansion and contributing to chemoresistance. In this study, we compared the toxicity and efficacy in mice of natural product gossypol and its semisynthetic derivative apo-gossypol, compounds that bind and inhibit antiapoptotic Bcl-2 family proteins. Daily oral dosing studies showed that mice tolerate doses of apogossypol 2- to 4-times higher than gossypol. Hepatotoxicity and gastrointestinal toxicity represented the major adverse activities of gossypol, with apogossypol far less toxic. Efficacy was tested in transgenic mice in which Bcl-2 is overexpressed in B cells, resembling low-grade follicular lymphoma in humans. In vitro, Bcl-2–expressing B cells from transgenic mice were more sensitive to cytotoxicity induced by apogossypol than gossypol, with LD50 values of 3 to 5 μM and 7.5 to 10 μM, respectively. In vivo, using the maximum tolerated dose of gossypol for sequential daily dosing, apogossypol displayed superior activity to gossypol in terms of reducing splenomegaly and reducing B-cell counts in spleens of Bcl-2–transgenic mice. Taken together, these studies indicate that apogossypol is superior to parent compound gossypol with respect to toxicology and efficacy, suggesting that further development of this compound for cancer therapy is warranted.


2007 ◽  
Vol 204 (13) ◽  
pp. 3095-3101 ◽  
Author(s):  
Almut Meyer-Bahlburg ◽  
Socheath Khim ◽  
David J. Rawlings

Although innate signals driven by Toll-like receptors (TLRs) play a crucial role in T-dependent immune responses and serological memory, the precise cellular and time-dependent requirements for such signals remain poorly defined. To directly address the role for B cell–intrinsic TLR signals in these events, we compared the TLR response profile of germinal center (GC) versus naive mature B cell subsets. TLR responsiveness was markedly up-regulated during the GC reaction, and this change correlated with altered expression of the key adaptors MyD88, Mal, and IRAK-M. To assess the role for B cell–intrinsic signals in vivo, we transferred MyD88 wild-type or knockout B cells into B cell–deficient μMT mice and immunized recipient animals with 4-hydroxy-3-nitrophenylacetyl (NP) chicken gamma globulin. All recipients exhibited similar increases in NP-specific antibody titers during primary, secondary, and long-term memory responses. The addition of lipopolysaccharide to the immunogen enhanced B cell-intrinsic, MyD88-dependent NP-specific immunoglobulin (Ig)M production, whereas NP-specific IgG increased independently of TLR signaling in B cells. Our data demonstrate that B cell–intrinsic TLR responses are up-regulated during the GC reaction, and that this change significantly promotes antigen-specific IgM production in association with TLR ligands. However, B cell–intrinsic TLR signals are not required for antibody production or maintenance.


2021 ◽  
Vol 15 (11) ◽  
pp. e0009943
Author(s):  
Haixia Wei ◽  
Hongyan Xie ◽  
Jiale Qu ◽  
Anqi Xie ◽  
Shihao Xie ◽  
...  

B cells played an important role in Schistosoma infection-induced diseases. TLR7 is an intracellular member of the innate immune receptor. The role of TLR7 on B cells mediated immune response is still unclear. Here, C57BL/6 mice were percutaneously infected by S. japonicum for 5–6 weeks. The percentages and numbers of B cells increased in the infected mice (p < 0.05), and many activation and function associated molecules were also changed on B cells. More splenic cells of the infected mice expressed TLR7, and B cells were served as the main cell population. Moreover, a lower level of soluble egg antigen (SEA) specific antibody and less activation associated molecules were found on the surface of splenic B cells from S. japonicum infected TLR7 gene knockout (TLR7 KO) mice compared to infected wild type (WT) mice (p < 0.05). Additionally, SEA showed a little higher ability in inducing the activation of B cells from naive WT mice than TLR7 KO mice (p < 0.05). Finally, the effects of TLR7 on B cells are dependent on the activation of NF-κB p65. Altogether, TLR7 was found modulating the splenic B cell responses in S. japonicum infected C57BL/6 mice.


2020 ◽  
Author(s):  
Xiao-Ting Zhang ◽  
Yong-Yao Yu ◽  
Hao-Yue Xu ◽  
Zhen-Yu Huang ◽  
Xia Liu ◽  
...  

AbstractThe skin of vertebrates is the outermost organ of the body and serves as the first line of defense against external aggressions. In contrast to mammalian skin, that of teleost fish lacks keratinization and has evolved to operate as a mucosal surface containing a skin-associated lymphoid tissue (SALT). Thus far, IgT representing the prevalent immunoglobulin (Ig) in SALT have only been reported upon infection with a parasite. However, very little is known about the types of B cells and Igs responding to bacterial infection in the teleost skin mucosa, as well as the inductive or effector role of the SALT in such responses. To address these questions, here we analyzed the immune response of trout skin upon infection with one of the most widespread fish skin bacterial pathogens, Flavobacterium columnare. This pathogen induced strong skin innate immune and inflammatory responses at the initial phases of infection. More critically, we found that the skin mucus of fish having survived the infection contained significant IgT-but not IgM- or IgD-specific titers against the bacteria. Moreover, we demonstrate the local proliferation and production of IgT+ B-cells and specific IgT titers respectively within the SALT upon bacterial infection. Thus, our findings represent the first demonstration that IgT is the main Ig isotype induced by the skin mucosa upon bacterial infection, and that because of the large surface of the skin, its SALT probably represents a prominent IgT inductive site in fish.


Sign in / Sign up

Export Citation Format

Share Document