scholarly journals Phylogenomic analysis of Clostridiodes difficile ribotype 106 strains reveals novel genetic islands and emergent phenotypes

2020 ◽  
Author(s):  
Bryan Angelo P. Roxas ◽  
Jennifer Lising Roxas ◽  
Rachel Claus-Walker ◽  
Anusha Harishankar ◽  
Asad Mansoor ◽  
...  

ABSTRACTBackgroundClostridioides difficile RT106 has emerged as a dominant molecular type in the USA in recent years, but the underlying factors contributing to its predominance remain undefined. As part of our ongoing C. difficile infection (CDI) surveillance in Arizona, we monitored RT106 frequency and characterized the genomic and phenotypic properties of the recovered isolates.ResultsFrom 2015-2018, RT106 was the second-most prevalent molecular type isolated from CDI patients in our surveillance. A representative RT106 strain displayed robust virulence and 100% lethality in the hamster model of acute CDI. We identified a unique 46 KB genomic island (GI1) in all RT106 strains, including those in public databases. GI1 was not found in its entirety in any other C. difficile clade, or indeed in any other microbial genome; however, smaller segments were detected in select Enterococcus faecium strains. Molecular clock analyses suggest that GI1 was horizontally acquired and sequentially assembled over time. Consistent with the presence of genes encoding homologs of VanZ and a SrtB-anchored collagen-binding adhesin in GI1, all tested RT106 strains had increased teicoplanin resistance and a majority displayed collagen-dependent biofilm formation. Two additional genomic islands (GI2 and GI3) were also present in a subset of RT106 strains. All three islands have features of mobile genetic elements and encode several putative virulence factors.ConclusionsConsistent with the known genetic plasticity of C. difficile, strains belonging to the RT106 clade harbor unique genetic islands. Correspondingly, emergent phenotypic properties may contribute to the relatively rapid shifts of strain distribution in patient populations.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Bryan Angelo P. Roxas ◽  
Jennifer Lising Roxas ◽  
Rachel Claus-Walker ◽  
Anusha Harishankar ◽  
Asad Mansoor ◽  
...  

AbstractClostridioides difficile infection (CDI) is a major healthcare-associated diarrheal disease. Consistent with trends across the United States, C. difficile RT106 was the second-most prevalent molecular type in our surveillance in Arizona from 2015 to 2018. A representative RT106 strain displayed robust virulence and 100% lethality in the hamster model of acute CDI. We identified a unique 46 KB genomic island (GI1) in all RT106 strains sequenced to date, including those in public databases. GI1 was not found in its entirety in any other C. difficile clade, or indeed, in any other microbial genome; however, smaller segments were detected in Enterococcus faecium strains. Molecular clock analyses suggested that GI1 was horizontally acquired and sequentially assembled over time. GI1 encodes homologs of VanZ and a SrtB-anchored collagen-binding adhesin, and correspondingly, all tested RT106 strains had increased teicoplanin resistance, and a majority displayed collagen-dependent biofilm formation. Two additional genomic islands (GI2 and GI3) were also present in a subset of RT106 strains. All three islands are predicted to encode mobile genetic elements as well as virulence factors. Emergent phenotypes associated with these genetic islands may have contributed to the relatively rapid expansion of RT106 in US healthcare and community settings.


2020 ◽  
Vol 64 (7) ◽  
Author(s):  
José Manuel Ortiz de la Rosa ◽  
Patrice Nordmann ◽  
Laurent Poirel

ABSTRACT Many transferable quinolone resistance mechanisms have been identified in Gram-negative bacteria. The plasmid-encoded 65-amino-acid-long ciprofloxacin-modifying enzyme CrpP was recently identified in Pseudomonas aeruginosa isolates. We analyzed a collection of 100 clonally unrelated and multidrug-resistant P. aeruginosa clinical isolates, among which 46 were positive for crpP-like genes, encoding five CrpP variants conferring variable levels of reduced susceptibility to fluoroquinolones. These crpP-like genes were chromosomally located as part of pathogenicity genomic islands.


Author(s):  
Antony T Vincent ◽  
Laurent Intertaglia ◽  
Victor Loyer ◽  
Valérie E Paquet ◽  
Émilie Adouane ◽  
...  

Abstract Genomic islands (Aeromonas salmonicida genomic islands, AsaGEIs) are found worldwide in many isolates of Aeromonas salmonicida subsp. salmonicida, a fish pathogen. To date, five variants of AsaGEI (1a, 1b, 2a, 2b and 2c) have been described. Here, we investigate a sixth AsaGEI, which was identified in France between 2016 and 2019 in 20 A. salmonicida subsp. salmonicida isolates recovered from sick salmon all at the same location. This new AsaGEI shares the same insertion site in the chromosome as the other AsaGEI2s as they all have a homologous integrase gene. This new AsaGEI was thus named AsaGEI2d, and has 5 unique genes compared to the other AsaGEIs. The isolates carrying AsaGEI2d also bear the plasmid pAsa7, which was initially found in an isolate from Switzerland. This plasmid provides resistance to chloramphenicol thanks to a cat gene. This study reveals more about the diversity of the AsaGEIs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Diogo Martins ◽  
Michael A. DiCandia ◽  
Aristides L. Mendes ◽  
Daniela Wetzel ◽  
Shonna M. McBride ◽  
...  

AbstractBacteria that reside in the gastrointestinal tract of healthy humans are essential for our health, sustenance and well-being. About 50–60% of those bacteria have the ability to produce resilient spores that are important for the life cycle in the gut and for host-to-host transmission. A genomic signature for sporulation in the human intestine was recently described, which spans both commensals and pathogens such as Clostridioides difficile and contains several genes of unknown function. We report on the characterization of a signature gene, CD25890, which, as we show is involved in the control of sporulation initiation in C. difficile under certain nutritional conditions. Spo0A is the main regulatory protein controlling entry into sporulation and we show that an in-frame deletion of CD25890 results in increased expression of spo0A per cell and increased sporulation. The effect of CD25890 on spo0A is likely indirect and mediated through repression of the sinRR´ operon. Deletion of the CD25890 gene, however, does not alter the expression of the genes coding for the cytotoxins or the genes involved in biofilm formation. Our results suggest that CD25890 acts to modulate sporulation in response to the nutrients present in the environment.


2014 ◽  
Vol 17 (2) ◽  
pp. 321-329 ◽  
Author(s):  
K. Wolska ◽  
P. Szweda ◽  
K. Lada ◽  
E. Rytel ◽  
K. Gucwa ◽  
...  

AbstractThe molecular-typing strategy, ERIC-PCR was used in an attempt to determine the genomic relationship of 28 P. aeruginosa strains isolated from faeces of healthy bovine, bovine mastitis and from faeces of hospital patients as well as from environment. ERIC-PCR fingerprinting revealed large molecular differentiation within this group of isolates. Twenty two out of 28 strains tested generated unique patterns of DNA bands and only three genotypes consisted of two isolates each were identified. We also tested the P. aeruginosa isolates for their ability to form a biofilm on abiotic surfaces including polyvinylchloride and polystyrene. Different biofilm-forming abilities were demonstrated among strains; however, most of them (64.3%) showed moderate-biofilm forming ability. The strains with increased swimming and twitching motility displayed elevated biofilm formation. However, a negative correlation was found between slime and initial biofilm production. On the basis of the results obtained, we suggest that there are no major differences in phenotypic properties between P. aeruginosa strains isolated from different sources


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1344
Author(s):  
Naima Lemjiber ◽  
Khalid Naamani ◽  
Annabelle Merieau ◽  
Abdelhi Dihazi ◽  
Nawal Zhar ◽  
...  

Bacterial burn is one of the major diseases affecting pear trees worldwide, with serious impacts on producers and economy. In Morocco, several pear trees (Pyrus communis) have shown leaf burns since 2015. To characterize the causal agent of this disease, we isolated fourteen bacterial strains from different parts of symptomatic pear trees (leaves, shoots, fruits and flowers) that were tested in planta for their pathogenicity on Louise bonne and Williams cultivars. The results showed necrotic lesions with a significant severity range from 47.63 to 57.77% on leaves of the Louise bonne cultivar inoculated with isolate B10, while the other bacterial isolates did not induce any disease symptom. 16S rRNA gene sequencing did not allow robust taxonomic discrimination of the incriminated isolate. Thus, we conducted whole-genome sequencing (WGS) and phylogenetic analyzes based on gyrA, gyrB and cdaA gene sequences, indicating that this isolate belongs to the Bacillus altitudinis species. This taxonomic classification was further confirmed by the Average Nucleotide Identity (ANI) and the in silico DNA-DNA hybridization (isDDH) analyzes compared to sixty-five Bacillus spp. type strains. The genome was mined for genes encoding carbohydrate-active enzymes (CAZymes) known to play a role in the vegetal tissue degradation. 177 candidates with functions that may support the in planta phytopathogenicity results were identified. To the best of our knowledge, this is the first data reporting B. altitudinis as agent of leaf burn in P. communis in Morocco. Our dataset will improve our knowledge on spread and pathogenicity of B. altitudinis genotypes that appears as emergent phytopathogenic agent, unveiling virulence factors and their genomic location (i.e., within genomic islands or the accessory genome) to induce trees disease.


2021 ◽  
Vol 9 (2) ◽  
pp. 306
Author(s):  
Cansu Karyal ◽  
Jaime Hughes ◽  
Michelle L. Kelly ◽  
Jeni C. Luckett ◽  
Philip V. Kaye ◽  
...  

Clostridioides difficile is the main cause of health-care-associated infectious diarrhoea. Toxins, TcdA and TcdB, secreted by this bacterium damage colonic epithelial cells and in severe cases this culminates in pseudomembranous colitis, toxic megacolon and death. Vaccines in human trials have focused exclusively on the parenteral administration of toxin-based formulations. These vaccines promote toxin-neutralising serum antibodies but fail to confer protection from infection in the gut. An effective route to immunise against gut pathogens and stimulate a protective mucosal antibody response (secretory immunoglobulin A, IgA) at the infection site is the oral route. Additionally, oral immunisation generates systemic antibodies (IgG). Using this route, two different antigens were tested in the hamster model: The colonisation factor CD0873 and a TcdB fragment. Animals immunised with CD0873 generated a significantly higher titre of sIgA in intestinal fluid and IgG in serum compared to naive animals, which significantly inhibited the adherence of C. difficile to Caco-2 cells. Following challenge with a hypervirulent isolate, the CD0873-immunised group showed a mean increase of 80% in time to experimental endpoint compared to naïve animals. Survival and body condition correlated with bacterial clearance and reduced pathology in the cecum. Our findings advocate CD0873 as a promising oral vaccine candidate against C. difficile.


2021 ◽  
Author(s):  
Yannick D. N. Tremblay ◽  
Benjamin A. R. Durand ◽  
Audrey Hamiot ◽  
Isabelle Martin-Verstraete ◽  
Marine Oberkampf ◽  
...  

2006 ◽  
Vol 189 (4) ◽  
pp. 1390-1398 ◽  
Author(s):  
Hui Wu ◽  
Su Bu ◽  
Peter Newell ◽  
Qiang Chen ◽  
Paula Fives-Taylor

ABSTRACT Mature Fap1, a 200-kDa fimbria-associated adhesin, is required for fimbrial biogenesis and biofilm formation in Streptococcus parasanguis. Fap1-like proteins are found in the genomes of many streptococcal and staphylococcal species. Fap1 is a serine-rich glycoprotein modified by O-linked glycan moieties. In this study, we identified a seven-gene cluster including secY2, orf1, orf2, orf3, secA2, gtf1, and gtf2 that is localized immediately downstream of fap1. The lower G+C contents and the presence of a putative transposase element suggest that this gene cluster was horizontally transferred from other bacteria and represents a genomic island. At least two genes in this island mediated Fap1 biogenesis. Mutation of a glucosyltransferase (Gtf1) gene led to accumulation of a Fap1 precursor, which had no detectable glycan moieties. Inactivation of a gene coding for an accessory Sec protein (SecY2) resulted in expression of a distinct Fap1 precursor, which reacted with one glycan-specific Fap1 antibody but not with another glycan-specific antibody. Furthermore, partially glycosylated Fap1 was detected on the cell surface and in the culture supernatant. These data suggest that SecY2 has a role in complete glycosylation of Fap1 and imply that SecY2 is not the only translocation channel for the Fap1 precursor and that alternative secretion machinery exists. Together, Gtf1 and SecY2 are involved in biogenesis of two distinct Fap1 precursors in S. parasanguis. Discovery of the effect of an accessory Sec protein on Fap1 glycosylation suggests that Fap1 secretion and glycosylation are coupled during Fap1 biogenesis.


2019 ◽  
Author(s):  
Sampriti Mukherjee ◽  
Matthew Jemielita ◽  
Vasiliki Stergioula ◽  
Mikhail Tikhonov ◽  
Bonnie L. Bassler

ABSTRACTPseudomonas aeruginosa transitions between the free-swimming state and the sessile biofilm mode during its pathogenic lifestyle. We show that quorum sensing represses P. aeruginosa biofilm formation and virulence by activating expression of genes encoding the KinB-AlgB two-component system. Phospho-AlgB represses biofilm and virulence genes, while KinB dephosphorylates, and thereby, inactivates AlgB. We discover that the photoreceptor BphP is the kinase that, in response to light, phosphorylates and activates AlgB. Indeed, exposing P. aeruginosa to light represses biofilm formation and virulence gene expression. To our knowledge, P. aeruginosa was not previously known to detect light. The KinB-AlgB-BphP module is present in all Pseudomonads, and we demonstrate that AlgB is the cognate response regulator for BphP in diverse bacterial phyla. We propose that KinB-AlgB-BphP constitutes a “three-component” system and AlgB is the node at which varied sensory information is integrated. This study sets the stage for light-mediated control of P. aeruginosa infectivity.


Sign in / Sign up

Export Citation Format

Share Document