scholarly journals Transmission potential of COVID-19 in Iran

Author(s):  
Kamalich Muniz-Rodriguez ◽  
Isaac Chun-Hai Fung ◽  
Shayesteh R. Ferdosi ◽  
Sylvia K. Ofori ◽  
Yiseul Lee ◽  
...  

AbstractWe estimated the reproduction number of 2020 Iranian COVID-19 epidemic using two different methods: R0 was estimated at 4.4 (95% CI, 3.9, 4.9) (generalized growth model) and 3.50 (1.28, 8.14) (epidemic doubling time) (February 19 - March 1) while the effective R was estimated at 1.55 (1.06, 2.57) (March 6-19).

2020 ◽  
Author(s):  
Eunha Shim ◽  
Amna Tariq ◽  
Gerardo Chowell

AbstractObjectivesIn South Korea, 13,745 cases of coronavirus disease (COVID-19) have been reported as of 19 July, 2020. To examine the spatiotemporal changes in the transmission potential, we present regional estimates of the doubling time and reproduction number (Rt) of COVID-19 in the country.MethodsDaily series of confirmed COVID-19 cases in the most affected regions were extracted from publicly available sources. We employed established mathematical and statistical methods to investigate the time-varying reproduction numbers of the COVID-19 in Korea and its doubling time, respectively.ResultsAt the regional level, Seoul and Gyeonggi Province have experienced the first peak of COVID-19 in early March, followed by the second wave in early June, with Rt exceeding 3.0 and mean doubling time ranging from 3.6 to 10.1 days. As of 19 July, 2020, Gyeongbuk Province and Daegu are yet to experience a second wave of the disease, where the mean Rt reached 3.5-4.4 and doubling time ranging from 2.8 to 4.6 days during the first wave.ConclusionsOur findings support the effectiveness of control measures against COVID-19 in Korea. However, the easing of the restrictions imposed by the government in May 2020 facilitated a second wave in the greater Seoul area.HighlightsSouth Korea has experienced two spatially heterogenous waves of COVID-19.Seoul and Gyeonggi Province experienced two waves of COVID-19 in March and June.In the densely populated Seoul and nearby areas, reproduction numbers exceeded 3.0.The easing of the social distancing measures resulted in the second wave.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Hiroaki Murayama ◽  
Taishi Kayano ◽  
Hiroshi Nishiura

Abstract Background In Japan, a part of confirmed patients’ samples have been screened for the variant of concern (VOC), including the variant alpha with N501Y mutation. The present study aimed to estimate the actual number of cases with variant alpha and reconstruct the epidemiological dynamics. Methods The number of cases with variant alpha out of all PCR confirmed cases was estimated, employing a hypergeometric distribution. An exponential growth model was fitted to the growth data of variant alpha cases over fourteen weeks in Tokyo. Results The weekly incidence with variant alpha from 18–24 January 2021 was estimated at 4.2 (95% confidence interval (CI): 0.7, 44.0) cases. The expected incidence in early May ranged from 420–1120 cases per week, and the reproduction number of variant alpha was on the order of 1.5 even under the restriction of contact from January-March, 2021, Tokyo. Conclusions The variant alpha was predicted to swiftly dominate COVID-19 cases in Tokyo, and this has actually occurred by May 2021. Devising the proposed method, any country or location can interpret the virological sampling data.


Author(s):  
Eunha Shim ◽  
Amna Tariq ◽  
Wongyeong Choi ◽  
Yiseul Lee ◽  
Gerardo Chowell

AbstractSince the first identified individual of 2019 novel coronavirus (COVID-19) infection on Jan 20, 2020 in South Korea, the number of confirmed cases rapidly increased. As of Feb 26, 2020, 1,261 cases of COVID-19 including 12 deaths were confirmed in South Korea. Using the incidence data of COVID-19, we estimate the reproduction number at 1.5 (95% CI: 1.4-1.6), which indicates sustained transmission and support the implementation of social distancing measures to rapidly control the outbreak.


Author(s):  
Kenji Mizumoto ◽  
Katsushi Kagaya ◽  
Gerardo Chowell

AbstractBackgroundSince the first cluster of cases was identified in Wuhan City, China, in December, 2019, coronavirus disease 2019 (COVID-19) rapidly spread around the world. Despite the scarcity of publicly available data, scientists around the world have made strides in estimating the magnitude of the epidemic, the basic reproduction number, and transmission patterns. Accumulating evidence suggests that a substantial fraction of the infected individuals with the novel coronavirus show little if any symptoms, which highlights the need to reassess the transmission potential of this emerging disease. In this study, we derive estimates of the transmissibility and virulence of COVID-19 in Wuhan City, China, by reconstructing the underlying transmission dynamics using multiple data sources.MethodsWe employ statistical methods and publicly available epidemiological datasets to jointly derive estimates of transmissibility and severity associated with the novel coronavirus. For this purpose, the daily series of laboratory–confirmed COVID-19 cases and deaths in Wuhan City together with epidemiological data of Japanese repatriated from Wuhan City on board government–chartered flights were integrated into our analysis.ResultsOur posterior estimates of basic reproduction number (R) in Wuhan City, China in 2019–2020 reached values at 3.49 (95%CrI: 3.39–3.62) with a mean serial interval of 6.0 days, and the enhanced public health intervention after January 23rd in 2020 was associated with a significantly reduced R at 0.84 (95%CrI: 0.81–0.88), with the total number of infections (i.e. cumulative infections) estimated at 1906634 (95%CrI: 1373500–2651124) in Wuhan City, elevating the overall proportion of infected individuals to 19.1% (95%CrI: 13.5–26.6%). We also estimated the most recent crude infection fatality ratio (IFR) and time–delay adjusted IFR at 0.04% (95% CrI: 0.03%–0.06%) and 0.12% (95%CrI: 0.08–0.17%), respectively, estimates that are several orders of magnitude smaller than the crude CFR estimated at 4.06%ConclusionsWe have estimated key epidemiological parameters of the transmissibility and virulence of COVID-19 in Wuhan, China during January-February, 2020 using an ecological modelling approach. The power of this approach lies in the ability to infer epidemiological parameters with quantified uncertainty from partial observations collected by surveillance systems.


Author(s):  
Akira Endo ◽  
Hiroshi Nishiura

Background. Migratory waterfowl annually migrate over the continents along the routes known as flyways, serving as carriers of avian influenza virus across distant locations. Prevalence of influenza varies with species, and there are also geographical and temporal variations. However, the role of long-distance migration in multispecies transmission dynamics has yet to be understood. We constructed a mathematical model to capture the global dynamics of avian influenza, identifying species and locations that contribute to sustaining transmission.Methods. We devised a multisite, multispecies SIS (susceptible-infectious-susceptible) model, and estimated transmission rates within and between species in each geographical location from prevalence data. Parameters were directly sampled from posterior distribution under Bayesian inference framework. We then analyzed contribution of each species in each location to the global patterns of influenza transmission.Results. Transmission and migration parameters were estimated by Bayesian posterior sampling. The basic reproduction number was estimated at 1.1, slightly above the endemic threshold. Mallard was found to be the most important host with the highest transmission potential, and high- and middle-latitude regions appeared to act as hotspots of influenza transmission. The local reproduction number suggested that the prevalence of avian influenza in the Oceania region is dependent on the inflow of infected birds from other regions.Conclusion. Mallard exhibited the highest transmission rate among the species explored. Migration was suggested to be a key factor of the global prevalence of avian influenza, as transmission is locally sustainable only in the northern hemisphere, and the virus could be extinct in the Oceania region without migration.


Author(s):  
Oyelola A. Adegboye ◽  
Adeshina I. Adekunle ◽  
Ezra Gayawan

On 31 December 2019, the World Health Organization (WHO) was notified of a novel coronavirus disease in China that was later named COVID-19. On 11 March 2020, the outbreak of COVID-19 was declared a pandemic. The first instance of the virus in Nigeria was documented on 27 February 2020. This study provides a preliminary epidemiological analysis of the first 45 days of COVID-19 outbreak in Nigeria. We estimated the early transmissibility via time-varying reproduction number based on the Bayesian method that incorporates uncertainty in the distribution of serial interval (time interval between symptoms onset in an infected individual and the infector), and adjusted for disease importation. By 11 April 2020, 318 confirmed cases and 10 deaths from COVID-19 have occurred in Nigeria. At day 45, the exponential growth rate was 0.07 (95% confidence interval (CI): 0.05–0.10) with a doubling time of 9.84 days (95% CI: 7.28–15.18). Separately for imported cases (travel-related) and local cases, the doubling time was 12.88 days and 2.86 days, respectively. Furthermore, we estimated the reproduction number for each day of the outbreak using a three-weekly window while adjusting for imported cases. The estimated reproduction number was 4.98 (95% CrI: 2.65–8.41) at day 22 (19 March 2020), peaking at 5.61 (95% credible interval (CrI): 3.83–7.88) at day 25 (22 March 2020). The median reproduction number over the study period was 2.71 and the latest value on 11 April 2020, was 1.42 (95% CrI: 1.26–1.58). These 45-day estimates suggested that cases of COVID-19 in Nigeria have been remarkably lower than expected and the preparedness to detect needs to be shifted to stop local transmission.


2016 ◽  
Vol 283 (1827) ◽  
pp. 20160048 ◽  
Author(s):  
Michael T. White ◽  
George Shirreff ◽  
Stephan Karl ◽  
Azra C. Ghani ◽  
Ivo Mueller

There is substantial variation in the relapse frequency of Plasmodium vivax malaria, with fast-relapsing strains in tropical areas, and slow-relapsing strains in temperate areas with seasonal transmission. We hypothesize that much of the phenotypic diversity in P. vivax relapses arises from selection of relapse frequency to optimize transmission potential in a given environment, in a process similar to the virulence trade-off hypothesis. We develop mathematical models of P. vivax transmission and calculate the basic reproduction number R 0 to investigate how transmission potential varies with relapse frequency and seasonality. In tropical zones with year-round transmission, transmission potential is optimized at intermediate relapse frequencies of two to three months: slower-relapsing strains increase the opportunity for onward transmission to mosquitoes, but also increase the risk of being outcompeted by faster-relapsing strains. Seasonality is an important driver of relapse frequency for temperate strains, with the time to first relapse predicted to be six to nine months, coinciding with the duration between seasonal transmission peaks. We predict that there is a threshold degree of seasonality, below which fast-relapsing tropical strains are selected for, and above which slow-relapsing temperate strains dominate, providing an explanation for the observed global distribution of relapse phenotypes.


2020 ◽  
Author(s):  
Yunjeong Lee ◽  
Dong Han Lee ◽  
Hee-Dae Kwon ◽  
Changsoo Kim ◽  
Jeehyun Lee

Abstract Background: The reproduction number is one of the most crucial parameters in determining disease dynamics, providing a summary measure of the transmission potential. However, estimating this value is particularly challenging owing to the characteristics of epidemic data, including non-reproducibility and incompleteness.Methods: In this study, we propose mathematical models with different population structures; each of these models can produce data on the number of cases of the influenza A(H1N1)pdm09 epidemic in South Korea. These structured models incorporating the heterogeneity of age and region are used to estimate the time-dependent effective reproduction numbers. Subsequently, the age- and region-specific reproduction numbers are also computed to analyze the differences illustrated in the incidence data.Results: The basic SIR fails to provide a reasonable estimation of the reproduction numbers. The estimated values demonstrate a large variation and remains outside of the feasible range for the influenza, regardless of the time period for data. Real-time estimation using age- and region-structured models demonstrated that the effective reproduction number rose sharply during mid-October when the ㅜumber of patients increased dramatically. The reproduction number fell below unity at the end of October and stayed lower than unity indicating that the epidemic starts decreasing, which is consistent with the incidence data.Conclusions: Numerical results reveal that the introduction of heterogeneity into the population to represent the general characteristics of dynamics is essential for the robust estimation of parameters.


BMJ Open ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. e056636
Author(s):  
Thomas Ward ◽  
Alex Glaser ◽  
Alexander Johnsen ◽  
Feng Xu ◽  
Ian Hall ◽  
...  

ObjectivesImportations of novel variants of concern (VOC), particularly B.1.617.2, have become the impetus behind recent outbreaks of SARS-CoV-2. Concerns around the impact on vaccine effectiveness, transmissibility and severity are now driving the public health response to these variants. This paper analyses the patterns of growth in hospitalisations and confirmed cases for novel VOCs by age groups, geography and ethnicity in the context of changing behaviour, non-pharmaceutical interventions (NPIs) and the UK vaccination programme. We seek to highlight where strategies have been effective and periods that have facilitated the establishment of new variants.DesignWe have algorithmically linked the most complete testing and hospitalisation data in England to create a data set of confirmed infections and hospitalisations by SARS-CoV-2 genomic variant. We have used these linked data sets to analyse temporal, geographic and demographic distinctions.Setting and participantsThe setting is England from October 2020 to July 2021. Participants included all COVID-19 tests that included RT-PCR CT gene target data or underwent sequencing and hospitalisations that could be linked to these tests.MethodsTo calculate the instantaneous growth rate for VOCs we have developed a generalised additive model fit to multiple splines and varying day of the week effects. We have further modelled the instantaneous reproduction number Rt for the B.1.1.7 and B.1.617.2 variants and included a doubly interval censored model to temporally adjust the confirmed variant cases.ResultsWe observed a clear replacement of the predominant B.1.1.7 by the B.1.617.2 variant without observing sustained exponential growth in other novel variants. Modelled exponential growth of RT PCR gene target triple-positive cases was initially detected in the youngest age groups, although we now observe across all ages a very small doubling time of 10.7 (95% CI 9.1 to 13.2) days and 8 (95% CI 6.9 to 9.1) days for cases and hospitalisations, respectively. We observe that growth in RT PCR gene target triple-positive cases was first detected in the Indian ethnicity group in late February, with a peak of 0.06 (95% CI 0.07 to 0.05) in the instantaneous growth rate, but is now maintained by the white ethnicity groups, observing a doubling time of 6.8 (95% CI 4.9 to 11) days. Rt analysis indicates a reproduction number advantage of 0.45 for B.1.617.2 relative to B.1.1.7, with the Rt value peaking at 1.85 for B.1.617.2.ConclusionsOur results illustrate a clear transmission advantage for the B.1.617.2 variant and the growth in hospitalisations illustrates that this variant is able to maintain exponential growth within age groups that are largely doubly vaccinated. There are concerning signs of intermittent growth in the B.1.351 variant, reaching a 28-day doubling time peak in March 2021, although this variant is presently not showing any evidence of a transmission advantage over B.1.617.2. Step 1b of the UK national lockdown easing was sufficient to precipitate exponential growth in B.1.617.2 cases for most regions and younger adult age groups. The final stages of NPI easing appeared to have a negligible impact on the growth of B.1.617.2 with every region experiencing sustained exponential growth from step 2. Nonetheless, early targeted local NPIs appeared to markedly reduced growth of B.1.617.2. Later localised interventions, at a time of higher prevalence and greater geographic dispersion of this variant, appeared to have a negligible impact on growth.


Sign in / Sign up

Export Citation Format

Share Document