scholarly journals Association between social factors and gastrointestinal parasite product excretion in a group of non-cooperatively breeding carrion crows

2020 ◽  
Author(s):  
Claudia A.F. Wascher

AbstractThe social environment strongly affects the physiological stress response in group living animals, which in turn can affect the immune system and increase susceptibility to parasites. Here, I investigate relationships between social behavior and gastrointestinal parasite product excretion in the carrion crow (Corvus corone). Individuals from a population of non-cooperatively breeding carrion crows excreted less samples containing coccidian oocysts when kept in larger groups (8 or 9 individuals) compared to those individuals kept in smaller groups (2 or 3 individuals). Lower-ranking individuals excreted more samples containing parasite oocysts compared to higher-ranking individuals. The strength of affiliative relationships and number of related individuals in the group did not relate to the proportion of droppings containing coccidian oocysts. The present results confirm an association between social environment and parasite excretion patterns in carrion crows, but the patterns described in the present study differ from previously published data derived from a group of cooperatively breeding crows. This illustrates that differences between the social systems of carrion crows might result in different associations between the social environment and parasite product excretion patterns.Significance statementOne major cost of group living is an increase in susceptibility to parasites, however not all group living animals are affected by this in the same way. A better understanding how social behavior is associated with parasite burden can help to better understand evolution of group living. This study attempts to investigate associations between dominance rank, affiliative relationships as well as groups size and gastrointestinal parasite product excretion in a group of captive carrion crows. Lower-ranking individuals excreted more samples containing parasite oocysts compared to higher-ranking individuals, confirming an association between social relationships within the groups (for example dominance rank) and parasite excretion patterns.

Author(s):  
Volodymyr Ryabchenko

There are following prerequisites outlined in this article: worldwide democratization trend; complexity of structures of social systems; growing needs in human capital development; autonomy of national higher education institutions; civilizational problem of Ukraine in national elite. Conceptual problems on a road to real democracy in higher education institutions were actualized and analyzed. Determined and characterized three models of higher education institutions activities based on the level of democratization needs of their social environment as: negative, neutral and favorable.


Author(s):  
Abigail J. Stewart ◽  
Kay Deaux

This chapter provides a framework designed to address how individual persons respond to changes and continuities in social systems and historical circumstances at different life stages and in different generations. We include a focus on systematic differences among the people who experience these changes in the social environment—differences both in the particular situations they find themselves in and in their personalities. Using examples from research on divorce, immigration, social movement participation, and experiences of catastrophic events, we make a case for an integrated personality and social psychology that extends the analysis across time and works within socially and historically important contexts.


2013 ◽  
Vol 368 (1618) ◽  
pp. 20120345 ◽  
Author(s):  
Daniel E. Runcie ◽  
Ralph T. Wiedmann ◽  
Elizabeth A. Archie ◽  
Jeanne Altmann ◽  
Gregory A. Wray ◽  
...  

Variation in the social environment can have profound effects on survival and reproduction in wild social mammals. However, we know little about the degree to which these effects are influenced by genetic differences among individuals, and conversely, the degree to which social environmental variation mediates genetic reaction norms. To better understand these relationships, we investigated the potential for dominance rank, social connectedness and group size to modify the effects of genetic variation on gene expression in the wild baboons of the Amboseli basin. We found evidence for a number of gene–environment interactions (GEIs) associated with variation in the social environment, encompassing social environments experienced in adulthood as well as persistent effects of early life social environment. Social connectedness, maternal dominance rank and group size all interacted with genotype to influence gene expression in at least one sex, and either in early life or in adulthood. These results suggest that social and behavioural variation, akin to other factors such as age and sex, can impact the genotype–phenotype relationship. We conclude that GEIs mediated by the social environment are important in the evolution and maintenance of individual differences in wild social mammals, including individual differences in responses to social stressors.


2020 ◽  
Author(s):  
D. Ribeiro ◽  
A.R. Nunes ◽  
M.C. Teles ◽  
S. Anbalagan ◽  
J. Blechman ◽  
...  

AbstractOxytocin-like peptides have been implicated in the regulation of a wide range of social behaviors across taxa. On the other hand, the social environment, which is composed of conspecifics genotypes, is also known to influence the development of social behavior, creating the possibility for indirect genetic effects. Here we used a knockout line for the oxytocin receptor in zebrafish to investigate how the genotypic composition of the social environment (Es) interacts with the oxytocin genotype (G) of the focal individual in the regulation of its social behavior. For this purpose, we have raised wild-type or knock-out zebrafish in either wild-type or knock-out shoals and tested different components of social behavior in adults. GxEs effects were detected in some behaviors, highlighting the need to control for GxEs effects when interpreting results of experiments using genetically modified animals, since the social environment can either rescue or promote phenotypes associated with specific genes.


Behaviour ◽  
2014 ◽  
Vol 151 (1) ◽  
pp. 47-71 ◽  
Author(s):  
Kristina Hick ◽  
Adam R. Reddon ◽  
Constance M. O’Connor ◽  
Sigal Balshine

The costs and benefits of engaging in a contest will differ depending on the social situation of the individuals involved. Therefore, understanding contest behaviour can help to elucidate the trade-offs of living in differing social systems and shed light on the evolution of social behaviour. In the current study, we compared contest behaviour in two closely related species of Lamprologine cichlid fish. Neolamprologus pulcher and Telmatochromis temporalis are both pair-breeding cichlids, but N. pulcher are highly social, group-living fish, while T. temporalis display no grouping behaviour. To examine how competition varies by species, sex and familiarity, we staged same-sex conspecific contests over a shelter, a resource that is highly valued by both species, where contestants were either familiar or unfamiliar to one another. When we examined tactical and strategic components of these contests, we found that the highly social species had shorter contests and engaged in fewer costly aggressive acts than did the non-social species. Individuals of the highly social species were also more likely to resolve conflicts through the use of submissive displays, while individuals of the non-social species were more likely to flee from conflict. Familiarity increased the use of submissive displays in the highly social species but not in the less social species. Our findings suggest that conflict resolution behaviour and dominance hierarchy formation are fundamentally linked to the evolution of complex social systems.


Author(s):  
Jordan A. Anderson ◽  
Amanda J. Lea ◽  
Tawni N. Voyles ◽  
Mercy Y. Akinyi ◽  
Ruth Nyakundi ◽  
...  

The social environment is a major determinant of morbidity, mortality and Darwinian fitness in social animals. Recent studies have begun to uncover the molecular processes associated with these relationships, but the degree to which they vary across different dimensions of the social environment remains unclear. Here, we draw on a long-term field study of wild baboons to compare the signatures of affiliative and competitive aspects of the social environment in white blood cell gene regulation, under both immune-stimulated and non-stimulated conditions. We find that the effects of dominance rank on gene expression are directionally opposite in males versus females, such that high-ranking males resemble low-ranking females, and vice versa. Among females, rank and social bond strength are both reflected in the activity of cellular metabolism and proliferation genes. However, while we observe pronounced rank-related differences in baseline immune gene activity, only bond strength predicts the fold-change response to immune (lipopolysaccharide) stimulation. Together, our results indicate that the directionality and magnitude of social effects on gene regulation depend on the aspect of the social environment under study. This heterogeneity may help explain why social environmental effects on health and longevity can also vary between measures. This article is part of the theme issue ‘The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies’.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e4028 ◽  
Author(s):  
Tanmay Dixit ◽  
Sinead English ◽  
Dieter Lukas

BackgroundLife history theory predicts that mothers should adjust reproductive investment depending on benefits of current reproduction and costs of reduced future reproductive success. These costs and benefits may in turn depend on the breeding female’s social environment. Cooperative breeders provide an ideal system to test whether changes in maternal investment are associated with the social conditions mothers experience. As alloparental helpers assist in offspring care, larger groups might reduce reproductive costs for mothers or alternatively indicate attractive conditions for reproduction. Thus, mothers may show reduced (load-lightening) or increased (differential allocation) reproductive investment in relation to group size. A growing number of studies have investigated how cooperatively breeding mothers adjust pre-natal investment depending on group size. Our aim was to survey these studies to assess, first, whether mothers consistently reduce or increase pre-natal investment when in larger groups and, second, whether these changes relate to variation in post-natal investment.MethodsWe extracted data on the relationship between helper number and maternal pre-natal investment (egg size) from 12 studies on 10 species of cooperatively breeding vertebrates. We performed meta-analyses to calculate the overall estimated relationship between egg size and helper number, and to quantify variation among species. We also tested whether these relationships are stronger in species in which the addition of helpers is associated with significant changes in maternal and helper post-natal investment.ResultsAcross studies, there is a significant negative relationship between helper number and egg size, suggesting that in most instances mothers show reduced reproductive investment in larger groups, in particular in species in which mothers also show a significant reduction in post-natal investment. However, even in this limited sample, substantial variation exists in the relationship between helper number and egg size, and the overall effect appears to be driven by a few well-studied species.DiscussionOur results, albeit based on a small sample of studies and species, indicate that cooperatively breeding females tend to produce smaller eggs in larger groups. These findings on prenatal investment accord with previous studies showing similar load-lightening reductions in postnatal parental effort (leading to concealed helper effects), but do not provide empirical support for differential allocation. However, the considerable variation in effect size across studies suggests that maternal investment is mitigated by additional factors. Our findings indicate that variation in the social environment may influence life-history strategies and suggest that future studies investigating within-individual changes in maternal investment in cooperative breeders offer a fruitful avenue to study the role of adaptive plasticity.


2016 ◽  
Vol 113 (22) ◽  
pp. 6178-6181 ◽  
Author(s):  
Christina M. Bergey ◽  
Jane E. Phillips-Conroy ◽  
Todd R. Disotell ◽  
Clifford J. Jolly

In the endeavor to associate genetic variation with complex traits, closely related taxa are particularly fruitful for understanding the neurophysiological and genetic underpinnings of species-specific attributes. Similarity to humans has motivated research into nonhuman primate models, yet few studies of wild primates have investigated immediate causal factors of evolutionarily diverged social behaviors. Neurotransmitter differences have been invoked to explain the distinct behavioral suites of two baboon species in Awash, Ethiopia, which differ markedly in social behavior despite evolutionary propinquity. With this natural experiment, we test the hypothesis that genomic regions associated with monoamine neurotransmitters would be highly differentiated, and we identify a dopamine pathway as an outlier, highlighting the system as a potential cause of species-specific social behaviors. Dopamine levels and resultant variation in impulsivity were likely under differential selection in the species due to social system structure differences, with either brash or circumspect social behavior advantageous to secure mating opportunities depending on the social backdrop. Such comparative studies into the causes of the behavioral agendas that create and interact with social systems are of particular interest, and differences in temperament related to boldness and associated with dopamine variation likely played important roles in the evolution of all social, behaviorally complex animals, including baboons and humans.


Sign in / Sign up

Export Citation Format

Share Document