scholarly journals Sustainable social distancing through facemask use and testing during the Covid-19 pandemic

Author(s):  
Diego Chowell ◽  
Kimberlyn Roosa ◽  
Ranu Dhillon ◽  
Gerardo Chowell ◽  
Devabhaktuni Srikrishna

We investigate how individual protective behaviors, different levels of testing, and isolation influence the transmission and control of the COVID-19 pandemic. Based on an SEIR-type model incorporating asymptomatic but infectious individuals (40%), we show that the pandemic may be readily controllable through a combination of testing, treatment if necessary, and self-isolation after testing positive (TTI) of symptomatic individuals together with social protection (e.g., facemask use, handwashing). When the basic reproduction number, R0, is 2.4, 65% effective social protection alone (35% of the unprotected transmission) brings the R below 1. Alternatively, 20% effective social protection brings the reproduction number below 1.0 so long as 75% of the symptomatic population is covered by TTI within 12 hours of symptom onset. Even with 20% effective social protection, TTI of 1 in 4 symptomatic individuals can substantially 'flatten the curve' cutting the peak daily incidence in half.

Author(s):  
Ebrahim Sahafizadeh ◽  
Samaneh Sartoli

AbstractBackgroundAs reported by Iranian governments, the first cases of coronavirus (COVID-19) infections confirmed in Qom, Iran on February 19, 2020 (30 Bahman 1398). The number of identified cases afterward increased rapidly and the novel coronavirus spread to all provinces of the country. This study aimed to fit an epidemic model to the reported cases data to estimate the basic reproduction number (R0) of COVID-19 in Iran.MethodsWe used data from February 21, 2020, to April 21, 2020, on the number of cases reported by Iranian governments and we employed the SIR (Susceptible-Infectious-Removed) epidemic spreading model to fit the transmission model to the reported cases data by tuning the parameters in order to estimate the basic reproduction number of COVID-19 in Iran.ResultsThe value of reproduction number was estimated 4.86 in the first week and 4.5 in the second week. it decreased from 4.29 to 2.37 in the next four weeks. At the seventh week of the outbreak the reproduction number was reduced below one.ConclusionsThe results indicate that the basic reproduction number of COVID-19 was significantly larger than one in the early stages of the outbreak. However, implementing social distancing and preventing travelling on Nowruz (Persian New Year) effectively reduced the reproduction number. Although the results indicate that reproduction number is below one, it is necessary to continue social distancing and control travelling to prevent causing a second wave of outbreak.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Dipo Aldila ◽  
Brenda M. Samiadji ◽  
Gracia M. Simorangkir ◽  
Sarbaz H. A. Khosnaw ◽  
Muhammad Shahzad

Abstract Objective Several essential factors have played a crucial role in the spreading mechanism of COVID-19 (Coronavirus disease 2019) in the human population. These factors include undetected cases, asymptomatic cases, and several non-pharmaceutical interventions. Because of the rapid spread of COVID-19 worldwide, understanding the significance of these factors is crucial in determining whether COVID-19 will be eradicated or persist in the population. Hence, in this study, we establish a new mathematical model to predict the spread of COVID-19 considering mentioned factors. Results Infection detection and vaccination have the potential to eradicate COVID-19 from Jakarta. From the sensitivity analysis, we find that rapid testing is crucial in reducing the basic reproduction number when COVID-19 is endemic in the population rather than contact trace. Furthermore, our results indicate that a vaccination strategy has the potential to relax social distancing rules, while maintaining the basic reproduction number at the minimum possible, and also eradicate COVID-19 from the population with a higher vaccination rate. In conclusion, our model proposed a mathematical model that can be used by Jakarta’s government to relax social distancing policy by relying on future COVID-19 vaccine potential.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257598
Author(s):  
Willem Esterhuizen ◽  
Jean Lévine ◽  
Stefan Streif

We present a detailed set-based analysis of the well-known SIR and SEIR epidemic models subjected to hard caps on the proportion of infective individuals, and bounds on the allowable intervention strategies, such as social distancing, quarantining and vaccination. We describe the admissible and maximal robust positively invariant (MRPI) sets of these two models via the theory of barriers. We show how the sets may be used in the management of epidemics, for both perfect and imperfect/uncertain models, detailing how intervention strategies may be specified such that the hard infection cap is never breached, regardless of the basic reproduction number. The results are clarified with detailed examples.


2020 ◽  
Author(s):  
Hyojung Lee ◽  
Yeahwon Kim ◽  
Eunsu Kim ◽  
Sunmi ‍Lee

BACKGROUND The emergence of COVID-19 has posed a serious threat to humans all around the world despite recent achievements of vaccines, antiviral drugs, and medical infrastructure. Our modern society has evolved too complex and most of the countries are tightly connected on a global scale. This makes it nearly impossible to implement perfect and prompt mitigation strategies for the COVID-19 outbreaks. Especially, due to the explosive growth of international travels, the diverse network and complexity of human mobility become an essential factor that gives rise to the spread of COVID-19 globally within a very short time. OBJECTIVE South Korea is one of the countries that have experienced the early stage of the COVID-19 pandemic. In the absence of vaccines and treatments, South Korea has implemented and maintained stringent interventions such as large-scale epidemiological investigation, rapid diagnosis, social distancing, and prompt clinical classification of severe patients with appropriate medical measures. In particular, South Korea has been implementing effective screening and quarantine at the airport. In this work, we aim to investigate the impacts of such effective interventions on international travels which can prevent local transmission of COVID-19. METHODS The relation between the number of passengers and the number of imported cases were analyzed. Based on the relation, we have assessed the country-specific risk as the spread of COVID-19 gets expanded from January to October 2020. Moreover, a renewal mathematical modeling has been employed incorporating the risk assessment to capture both imported and local cases of COVID-19 in South Korea. We have estimated the basic reproduction number and the effective reproduction number accounting for both imported and local cases. RESULTS The basic reproduction number (R_0) was estimated at 1.87 (95% CI : 1.47, 2.35) with the rate (α =0.07)of the secondary transmission caused by the imported cases. The time-varying basic reproduction number (effective reproduction number, R_t) was estimated. Our results indicate that the prompt implementation of case-isolation and quarantine were effective to reduce the. secondary cases from imported cases in spite of constant inflows from high-risk countries of COVID-19 all throughout the year 2020. Moreover, various mitigation interventions including social distancing and movement restriction have been maintained effectively to reduce the spread of local cases in South Korea. CONCLUSIONS We have investigated the relative risk of importation of COVID-19, using the country-specific epidemiological data, and passenger volume. By combining the social distancing, screening, and self-quarantine for all travelers entering Korea, the mitigation of COVID-19 transmission caused by imported cases in Korea was highly successful. Those efforts, accompanied by identification of the source of infection, the strengthened quarantine measures for travelers from overseas countries, should be continued. However, the recent new coronavirus variant originated from South Africa has been threatening to get back to the strict border control and lockdown of all around the world again. Therefore, it is urgent to assess the importation risk and maintain an effective surveillance system of COVID-19 in South Korea.


2020 ◽  
Vol 9 (5) ◽  
pp. 1297 ◽  
Author(s):  
Robin N. Thompson ◽  
Francesca A. Lovell-Read ◽  
Uri Obolski

Interventions targeting symptomatic hosts and their contacts were successful in bringing the 2003 SARS pandemic under control. In contrast, the COVID-19 pandemic has been harder to contain, partly because of its wide spectrum of symptoms in infectious hosts. Current evidence suggests that individuals can transmit the novel coronavirus while displaying few symptoms. Here, we show that the proportion of infections arising from hosts with few symptoms at the start of an outbreak can, in combination with the basic reproduction number, indicate whether or not interventions targeting symptomatic hosts are likely to be effective. However, as an outbreak continues, the proportion of infections arising from hosts with few symptoms changes in response to control measures. A high proportion of infections from hosts with few symptoms after the initial stages of an outbreak is only problematic if the rate of new infections remains high. Otherwise, it can simply indicate that symptomatic transmissions are being prevented successfully. This should be considered when interpreting estimates of the extent of transmission from hosts with few COVID-19 symptoms.


2020 ◽  
Vol 15 ◽  
pp. 34 ◽  
Author(s):  
Jayrold P. Arcede ◽  
Randy L. Caga-anan ◽  
Cheryl Q. Mentuda ◽  
Youcef Mammeri

A mathematical model was developed describing the dynamic of the COVID-19 virus over a population considering that the infected can either be symptomatic or not. The model was calibrated using data on the confirmed cases and death from several countries like France, Philippines, Italy, Spain, United Kingdom, China, and the USA. First, we derived the basic reproduction number, R0, and estimated the effective reproduction Reff for each country. Second, we were interested in the merits of interventions, either by distancing or by treatment. Results revealed that total and partial containment is effective in reducing the transmission. However, its duration may be long to eradicate the disease (104 days for France). By setting the end of containment as the day when hospital capacity is reached, numerical simulations showed that the duration can be reduced (up to only 39 days for France if the capacity is 1000 patients). Further, results pointed out that the effective reproduction number remains large after containment. Therefore, testing and isolation are necessary to stop the disease.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Fei Wang ◽  
Linhua Wang ◽  
Peng Wang

In order to reflect the population covered by institutional medical services, the concept of hospital potential capacity is proposed and a formula for its estimation is developed based on a population dynamic model. Using the collected data on hospital outpatient and inpatient services and the demographical information on Chongqing as an example, the demand for medical resource allocation in Chongqing is dynamically estimated. Moreover, the proposed formula is also useful in the estimation of the basic reproduction number in epidemiology. The results can be contributed to the improvement of decision-making in the allocation of medical resources and the evaluation of the interventions and control efforts of the infectious disease.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
M. De la Sen ◽  
A. Ibeas

AbstractIn this paper, we study the nonnegativity and stability properties of the solutions of a newly proposed extended SEIR epidemic model, the so-called SE(Is)(Ih)AR epidemic model which might be of potential interest in the characterization and control of the COVID-19 pandemic evolution. The proposed model incorporates both asymptomatic infectious and hospitalized infectious subpopulations to the standard infectious subpopulation of the classical SEIR model. In parallel, it also incorporates feedback vaccination and antiviral treatment controls. The exposed subpopulation has three different transitions to the three kinds of infectious subpopulations under eventually different proportionality parameters. The existence of a unique disease-free equilibrium point and a unique endemic one is proved together with the calculation of their explicit components. Their local asymptotic stability properties and the attainability of the endemic equilibrium point are investigated based on the next generation matrix properties, the value of the basic reproduction number, and nonnegativity properties of the solution and its equilibrium states. The reproduction numbers in the presence of one or both controls is linked to the control-free reproduction number to emphasize that such a number decreases with the control gains. We also prove that, depending on the value of the basic reproduction number, only one of them is a global asymptotic attractor and that the solution has no limit cycles.


2020 ◽  
Author(s):  
Peiyu Liu ◽  
Sha He ◽  
Libin Rong ◽  
Sanyi Tang

Abstract Background COVID-19 is spreading in many countries around the world. Italy is the hardest hit in Europe and its number of new infections is still increasing. This study aims to evaluate the reason for the rapidly growing epidemic in Italy.Methods We compared Italy’s data of outbreak and control measures with the province of Guangdong in China. Then, a modified SEIR model was applied to estimate the basic reproduction number. Finally, we utilized a time-dependent dynamic model to study the future disease dynamics in Italy.Results The comparison of specific measures implemented in the two places and the time when the measures were initiated shows that the prevention and control actions in Italy were not sufficiently timely and effective. Using a modified SEIR model, we estimated parameter values based on available cumulative data and calculate the basic reproduction number to be 4.32 before the national lockdown in Italy. Numerical simulations revealed that under a scenario in which very strict interventions are taken when the minimum contact rate is 1 with the exponential decreasing rate is 0.5 and the fast diagnosis rate is 0.5 with the exponential increasing rate is 0.5 (i.e. the test result will be available in two days). In this scenario, Italy will reach the peak (i.e. 23900) after 43 days.Conclusion This study suggests that Italy is currently in a very serious epidemic status since control measures such as blockade of schools, isolation, medical supports and media coverage are not sufficiently timely and effective.


Mathematics ◽  
2018 ◽  
Vol 6 (9) ◽  
pp. 154 ◽  
Author(s):  
Paride Lolika ◽  
Steady Mushayabasa

Short-term animal movements play an integral role in the transmission and control of zoonotic infections such as brucellosis, in communal farming zones where animal movements are highly uncontrolled. Such movements need to be incorporated in models that aim at informing animal managers effective ways to control the spread of zoonotic diseases. We developed, analyzed and simulated a two-patch mathematical model for brucellosis transmission that incorporates short-term animal mobility. We computed the basic reproduction number and demonstrated that it is a sharp threshold for disease dynamics. In particular, we demonstrated that, when the basic reproduction number is less than unity, then the disease dies out. However, if the basic reproduction number is greater than unity, the disease persists. Meanwhile, we applied optimal control theory to the proposed model with the aim of exploring the cost-effectiveness of different culling strategies. The results demonstrate that animal mobility plays an important role in shaping optimal control strategy.


Sign in / Sign up

Export Citation Format

Share Document