scholarly journals Selective enhancement of low-gamma activity by tACS improves phonemic processing and reading accuracy in dyslexia

2020 ◽  
Author(s):  
Silvia Marchesotti ◽  
Johanna Nicolle ◽  
Isabelle Merlet ◽  
Luc H. Arnal ◽  
John P. Donoghue ◽  
...  

AbstractThe phonological deficit in dyslexia is associated with altered low-gamma oscillatory function in left auditory cortex, but a causal relationship between oscillatory function and phonemic processing has never been established. After confirming a deficit at 30 Hz with electroencephalography (EEG), we applied 20 minutes of transcranial alternating current stimulation (tACS) to transiently restore this activity in adults with dyslexia. The intervention significantly improved phonological processing and reading accuracy as measured immediately after tACS. The effect was selective to 30 Hz stimulation, and proportional to dyslexia severity. Importantly, we observed that the focal intervention on the left auditory cortex also decreased 30 Hz activity in the right superior temporal cortex, resulting in reinstating a left dominance for the oscillatory response, as present in controls. These findings formally establish a causal role of neural oscillations in phonological processing, and offer solid neurophysiological grounds for a potential correction of low-gamma anomalies, and for alleviating of the phonological deficit in dyslexia.

2000 ◽  
Vol 12 (5) ◽  
pp. 753-762 ◽  
Author(s):  
Eamon McCrory ◽  
Uta Frith ◽  
Nicola Brunswick ◽  
Cathy Price

Eight dyslexic subjects, impaired on a range of tasks requiring phonological processing, were matched for age and general ability with six control subjects. Participants were scanned using positron emission tomography (PET) during three conditions: repeating real words, repeating pseudowords, and rest. In both groups, speech repetition relative to rest elicited widespread bilateral activation in areas associated with auditory processing of speech; there were no significant differences between words and pseudowords. However, irrespective of word type, the dyslexic group showed less activation than the control group in the right superior temporal and right post-central gyri and also in the left cerebellum. Notably, the right anterior superior temporal cortex (Brodmann's area 22 [BA 22]) was less activated in each of the eight dyslexic subjects, compared to each of the six control subjects. This deficit appears to be specific to auditory repetition as it was not detected in a previous study of reading which used the same sets of stimuli (Brunswick, N., McCrory, E., Price, C., Frith, C.D., & Frith, U. [1999]. Explicit and implicit processing of words and pseudowords by adult developmental dyslexics: A search for Wernicke's Wortschatz? Brain, 122, 1901-1917). This implies that the observed neural manifestation of developmental dyslexia is task-specific (i.e., functional rather than structural). Other studies of normal subjects indicate that attending to the phonetic structure of speech leads to a decrease in right-hemisphere processing. Lower right hemisphere activation in the dyslexic group may therefore indicate less processing of non-phonetic aspects of speech, allowing greater salience to be accorded to phonological aspects of attended speech.


2020 ◽  
Vol 11 ◽  
Author(s):  
Yiming Fan ◽  
Jin Liu ◽  
Ling-Li Zeng ◽  
Qiangli Dong ◽  
Jianpo Su ◽  
...  

Some brain abnormalities persist at the remission phase, that is, the state-independent abnormalities, which may be one of the reasons for the high recurrence of major depressive disorder (MDD). Hence, it is of great significance to identify state-independent abnormalities of MDD through longitudinal investigation. Ninety-nine MDD patients and 118 healthy controls (HCs) received diffusion tensor imaging scanning at baseline. After 6-month antidepressant treatment, 68 patients received a second scan, among which 59 patients achieved full clinical remission. Differences in whole-brain structural connectivity (SC) between patients with MDD at baseline and HCs were estimated by two-sample t-tests. Masked with significantly changed SCs in MDD, two-sample t-tests were conducted between the remitted MDD subgroup at follow-up and HCs, and paired t-tests were implemented to compare the differences of SC in the remitted MDD subgroup before and after treatment. Significantly decreased SC between the right insula and the anterior temporal cortex (ATC), between the right ATC and the posterior temporal cortex (PTC), between the left ATC and the auditory cortex as well as increased connectivity between the right posterior cingulate cortex (PCC) and the left medial parietal cortex (MPC) were observed in the MDD group compared with the HC group at baseline (p < 0.05, FDR corrected). The decreased connectivity between the right insula and the ATC and increased connectivity between the right PCC and the left MPC persisted in the remitted MDD subgroup at follow-up (p < 0.05, FDR corrected). The decreased SC between the right insula and the ATC and increased SC between the right PCC and left MPC showed state-independent characters, which may be implicated in the sustained negative attention bias and motor retardation in MDD. In contrast, the decreased SC between the right ATC and the PTC and between the left ATC and the auditory cortex seemed to be state-dependent.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Joseph M. Baker ◽  
Ning Liu ◽  
Xu Cui ◽  
Pascal Vrticka ◽  
Manish Saggar ◽  
...  

Abstract Researchers from multiple fields have sought to understand how sex moderates human social behavior. While over 50 years of research has revealed differences in cooperation behavior of males and females, the underlying neural correlates of these sex differences have not been explained. A missing and fundamental element of this puzzle is an understanding of how the sex composition of an interacting dyad influences the brain and behavior during cooperation. Using fNIRS-based hyperscanning in 111 same- and mixed-sex dyads, we identified significant behavioral and neural sex-related differences in association with a computer-based cooperation task. Dyads containing at least one male demonstrated significantly higher behavioral performance than female/female dyads. Individual males and females showed significant activation in the right frontopolar and right inferior prefrontal cortices, although this activation was greater in females compared to males. Female/female dyad’s exhibited significant inter-brain coherence within the right temporal cortex, while significant coherence in male/male dyads occurred in the right inferior prefrontal cortex. Significant coherence was not observed in mixed-sex dyads. Finally, for same-sex dyads only, task-related inter-brain coherence was positively correlated with cooperation task performance. Our results highlight multiple important and previously undetected influences of sex on concurrent neural and behavioral signatures of cooperation.


2019 ◽  
Author(s):  
S. A. Herff ◽  
C. Herff ◽  
A. J. Milne ◽  
G. D. Johnson ◽  
J. J. Shih ◽  
...  

AbstractRhythmic auditory stimuli are known to elicit matching activity patterns in neural populations. Furthermore, recent research has established the particular importance of high-gamma brain activity in auditory processing by showing its involvement in auditory phrase segmentation and envelope-tracking. Here, we use electrocorticographic (ECoG) recordings from eight human listeners, to see whether periodicities in high-gamma activity track the periodicities in the envelope of musical rhythms during rhythm perception and imagination. Rhythm imagination was elicited by instructing participants to imagine the rhythm to continue during pauses of several repetitions. To identify electrodes whose periodicities in high-gamma activity track the periodicities in the musical rhythms, we compute the correlation between the autocorrelations (ACC) of both the musical rhythms and the neural signals. A condition in which participants listened to white noise was used to establish a baseline. High-gamma autocorrelations in auditory areas in the superior temporal gyrus and in frontal areas on both hemispheres significantly matched the autocorrelation of the musical rhythms. Overall, numerous significant electrodes are observed on the right hemisphere. Of particular interest is a large cluster of electrodes in the right prefrontal cortex that is active during both rhythm perception and imagination. This indicates conscious processing of the rhythms’ structure as opposed to mere auditory phenomena. The ACC approach clearly highlights that high-gamma activity measured from cortical electrodes tracks both attended and imagined rhythms.


2021 ◽  
Vol 11 (11) ◽  
pp. 1510
Author(s):  
David L. Share

In this discussion paper, I review a number of common misconceptions about the phonological deficit theory (PDH) of dyslexia. These include the common but mistaken idea that the PDH is simply about phonemic awareness (PA), and, consequently, is a circular “pseudo”-explanation or epiphenomenon of reading difficulties. I argue that PA is only the “tip of the phonological iceberg” and that “deeper” spoken-language phonological impairments among dyslexics appear well before the onset of reading and even at birth. Furthermore, not even reading-specific expressions of phonological deficits—PA or pseudoword naming, can be considered circular if we clearly distinguish between reading proper—real meaning-bearing words, or real text, and the mechanisms (subskills) of reading development (such as phonological recoding). I also explain why an understanding of what constitutes an efficient writing system explains why phonology is necessarily a major source of variability in reading ability and hence a core deficit (or at least one core deficit) among struggling readers whether dyslexic or non-dyslexic. I also address the misguided notion that the PDH has now fallen out of favor because most dyslexia researchers have (largely) ceased studying phonological processing. I emphasize that acceptance of the PDH does not imply repudiation of other non-phonological hypotheses because the PDH does not claim to account for all the variance in reading ability/disability. Finally, I ask where neurobiology enters the picture and suggest that researchers need to exercise more caution in drawing their conclusions.


2007 ◽  
Vol 19 (7) ◽  
pp. 1193-1205 ◽  
Author(s):  
Elisabet Service ◽  
Päivi Helenius ◽  
Sini Maury ◽  
Riitta Salmelin

Electrophysiological methods have been used to study the temporal sequence of syntactic and semantic processing during sentence comprehension. Two responses associated with syntactic violations are the left anterior negativity (LAN) and the P600. A response to semantic violation is the N400. Although the sources of the N400 response have been identified in the left (and right) temporal lobe, the neural signatures of the LAN and P600 have not been revealed. The present study used magnetoencephalography to localize sources of syntactic and semantic activation in Finnish sentence reading. Participants were presented with sentences that ended in normally inf lected nouns, nouns in an unacceptable case, verbs instead of nouns, or nouns that were correctly inflected but made no sense in the context. Around 400 msec, semantically anomalous last words evoked strong activation in the left superior temporal lobe with significant activation also for word class errors (N400). Weaker activation was seen for the semantic errors in the right hemisphere. Later, 600-800 msec after word onset, the strongest activation was seen to word class and morphosyntactic errors (P600). Activation was significantly weaker to semantically anomalous and correct words. The P600 syntactic activation was localized to bilateral sources in the temporal lobe, posterior to the N400 sources. The results suggest that the same general region of the superior temporal cortex gives rise to both LAN and N400 with bilateral reactivity to semantic manipulation and a left hemisphere effect to syntactic manipulation. The bilateral P600 response was sensitive to syntactic but not semantic factors.


2001 ◽  
Vol 13 (6) ◽  
pp. 829-843 ◽  
Author(s):  
A. L. Roskies ◽  
J. A. Fiez ◽  
D. A. Balota ◽  
M. E. Raichle ◽  
S. E. Petersen

To distinguish areas involved in the processing of word meaning (semantics) from other regions involved in lexical processing more generally, subjects were scanned with positron emission tomography (PET) while performing lexical tasks, three of which required varying degrees of semantic analysis and one that required phonological analysis. Three closely apposed regions in the left inferior frontal cortex and one in the right cerebellum were significantly active above baseline in the semantic tasks, but not in the nonsemantic task. The activity in two of the frontal regions was modulated by the difficulty of the semantic judgment. Other regions, including some in the left temporal cortex and the cerebellum, were active across all four language tasks. Thus, in addition to a number of regions known to be active during language processing, regions in the left inferior frontal cortex were specifically recruited during semantic processing in a task-dependent manner. A region in the right cerebellum may be functionally related to those in the left inferior frontal cortex. Discussion focuses on the implications of these results for current views regarding neural substrates of semantic processing.


2021 ◽  
Author(s):  
Hehui Li ◽  
Rebecca A. Marks ◽  
Lanfang Liu ◽  
Jia Zhang ◽  
Hejing Zhong ◽  
...  

Extensive studies have reported significant cerebellar activation during reading tasks. However, it is still unclear which regions in the cerebellum are specifically involved in reading and what this involvement entails. With functional magnetic resonance imaging, we compared Chinese-English bilingual children’s cerebellar neural activity between reading and non-reading conditions and between Chinese characters and English words in a passive viewing paradigm. We observed that the posterior part of the right lobule VI showed greater activation in the reading compared to non-reading tasks. Reading specificity index was significantly in this region. Functional decoding via Neurosynth further showed that this region was responsible for phonological processing and connected with the cerebral reading areas. These results suggest that the posterior part of the right lobule VI might be a reading-selective region in the cerebellum. However, we did not observe any significantly separable activation patterns in the cerebellum between Chinese characters and English words, indicating that the region preferentially responding to reading may not be able to differentiate scripts in a passive viewing condition. In general, these findings deepen our understanding of how the cerebellum contributes to reading.


Sign in / Sign up

Export Citation Format

Share Document