scholarly journals Polarized endosome dynamics engage cytosolic Par-3 and dynein during asymmetric division

Author(s):  
Xiang Zhao ◽  
Kai Tong ◽  
Xingye Chen ◽  
Bin Yang ◽  
Qi Li ◽  
...  

AbstractAsymmetric cell division (ACD), which produces two daughters with different fates, is fundamental for generating cellular diversity. In the developing embryos of both invertebrates and vertebrates, asymmetrically dividing progenitors generate daughter cells with differential activity of Notch signaling1–7, a key regulator of cell fate decisions8,9. The cell polarity regulator Par-3 is critical for establishing this Notch asymmetry1,4,6, but the underlying mechanisms are not understood. Here, employing in vivo time-lapse imaging in the developing zebrafish forebrain during the mitotic cycle of radial glia, the principal vertebrate neural stem cells10,11, we show that during ACD, endosomes containing the Notch ligand Delta D (Dld) undergo convergent movement toward the cleavage plane, followed by preferential segregation into the posterior (and subsequently basal) Notchhi daughter. This asymmetric segregation requires the activity of Par-3 and the dynein motor complex. Employing label-retention expansion microscopy, we further detect Par-3 in the cytosol in association with the dynein light intermediate chain 1 (DLIC1) on Dld endosomes, suggesting a direct involvement of Par-3 in dynein-mediated polarized transport of Notch signaling endosomes. Our data reveal an unanticipated mechanism by which Par-3 regulates cell fate decision by directly polarizing Notch signaling components during ACD.

2021 ◽  
Vol 7 (24) ◽  
pp. eabg1244
Author(s):  
Xiang Zhao ◽  
Jason Q. Garcia ◽  
Kai Tong ◽  
Xingye Chen ◽  
Bin Yang ◽  
...  

In the developing embryos, the cortical polarity regulator Par-3 is critical for establishing Notch signaling asymmetry between daughter cells during asymmetric cell division (ACD). How cortically localized Par-3 establishes asymmetric Notch activity in the nucleus is not understood. Here, using in vivo time-lapse imaging of mitotic radial glia progenitors in the developing zebrafish forebrain, we uncover that during horizontal ACD along the anteroposterior embryonic axis, endosomes containing the Notch ligand DeltaD (Dld) move toward the cleavage plane and preferentially segregate into the posterior (subsequently basal) Notchhi daughter. This asymmetric segregation requires the activity of Par-3 and dynein motor complex. Using label retention expansion microscopy, we further detect Par-3 in the cytosol colocalizing the dynein light intermediate chain 1 (Dlic1) onto Dld endosomes. Par-3, Dlic1, and Dld are associated in protein complexes in vivo. Our data reveal an unanticipated mechanism by which cytoplasmic Par-3 directly polarizes Notch signaling components during ACD.


2004 ◽  
Vol 19 (3) ◽  
pp. 274-279
Author(s):  
Shigeaki Kanatani ◽  
Hidenori Tabata ◽  
Kazunori Nakajima

Cortical formation in the developing brain is a highly complicated process involving neuronal production (through symmetric or asymmetric cell division) interaction of radial glia with neuronal migration, and multiple modes of neuronal migration. It has been convincingly demonstrated by numerous studies that radial glial cells are neural stem cells. However, the processes by which neurons arise from radial glia and migrate to their final destinations in vivo are not yet fully understood. Recent studies using time-lapse imaging of neuronal migration are giving investigators an increasingly more detailed understanding of the mitotic behavior of radial glia and the migrating behavior of their daughter cells. In this review, we describe recent progress in elucidating neuronal migration in brain formation and how neuronal migration is disturbed by mutations in genes that control this process. ( J Child Neurol 2005;20:274—279).


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1370-1370
Author(s):  
Melanie G Cornejo ◽  
Thomas Mercher ◽  
Joseph D. Growney ◽  
Jonathan Jesneck ◽  
Ivan Maillard ◽  
...  

Abstract The Notch signaling pathway is involved in a broad spectrum of cell fate decisions during development, and in the hematopoietic system, it is known to favor T cell- vs B cell lineage commitment. However, its role in myeloid lineage development is less well understood. We have shown, using heterotypic co-cultures of murine primary hematopoietic stem cells (Lin-Sca-1+ckit+ HSCs) and OP9 stromal cells expressing the Notch ligand Delta1 (OP9-DL1), that Notch signaling derived from cell non-autonomous cues acts as a positive regulator of megakaryocyte fate from LSK cells. Bone marrow transplantation experiments with a constitutively active Notch mutant resulted in enhanced megakaryopoiesis in vivo, with increased MEP numbers and megakaryocyte colony formation. In contrast, expression of dnMAML using a conditional ROSA26 knock-in mouse model significantly impaired megakaryopoiesis in vivo, with a marked decrease in megakaryocyte progenitors. In order to understand the cellular differentiation pathways controlled by Notch, we first examined the ability of various purified progenitor populations to differentiate toward megakaryocytes upon Notch stimulation in vitro. We observed that CMP and MEP, but not GMP, can engage megakaryopoiesis upon Notch stimulation. Our results were consistent with expression analysis of Notch signaling genes in these purified progenitors and were supported by the observation that transgenic Notch reporter mice display higher levels of reporter (i.e. GFP) expression in HSC and MEP, vs. CMP and GMP in vivo. Furthermore, purified progenitors with high GFP expression gave rise to increased numbers of megakarocyte-containing colonies when plated in vitro compared to GFP-negative progenitors. In addition, further purification of the HSC population into long-term (LT), short-term (ST), and lymphoid-primed myeloid progenitors (LMPP) before plating on OP9-DL1 stroma showed that LMPP have a reduced ability to give rise to megakaryocytes compared to the other two populations. These data support the hypothesis that there is an early commitment to erythro/megakaryocytic fate from HSC prior to lymphoid commitment. To gain insight into the molecular mechanism underlying Notch-induced megakaryopoiesis, we performed global gene expression analysis that demonstrated the engagement of a megakaryopoietic transcriptional program when HSC were co-cultured with OP9-DL1 vs. OP9 stroma or OP9-DL1 treated with gamma-secretase inhibitor. Of interest, Runx1 was among the most upregulated genes in HSC co-cultured on OP9-DL1 stroma. To assess whether Notch signaling engages megakaryocytic fate through induction of Runx1, we plated HSC from Runx1 −/− mice on OP9-DL1 stroma. Compared to WT cells, Runx1 −/− HSC had a severely reduced ability to develop into CD41+ cells. In contrast, overexpression of Runx1 in WT HSC was sufficient to induce megakaryocyte fate on OP9 stroma without Notch stimulation. Together, our results indicate that Notch pathway activation induced by stromal cells is an important regulator of cell fate decisions in early progenitors. We show that Notch signaling is upstream of Runx1 during Notch-induced megakaryocyte differentiation and that Runx1 is an essential target of Notch signaling. We believe that these results provide important insight into the pathways controlling megakaryocyte differentiation, and may have important therapeutic potential for megakaryocyte lineage-related disorders.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 200-200
Author(s):  
Thomas Mercher ◽  
Melanie Cornejo ◽  
Christopher Sears ◽  
Thomas Kindler ◽  
Sandra Moore ◽  
...  

Abstract The Notch pathway regulates a broad range of biological mechanisms including proliferation, border formation and cell fate decisions. In the hematopoietic system, Notch signaling is generally thought to specify T cell lineage fate at the expense of the B cell whereas its role in the myeloid lineage development is unclear. When using heterotypic co-cultures of murine primary hematopoietic stem cells (HSC: Lin-Sca1+Kit+) with OP9 stromal cells, or OP9 cells expressing the Notch ligand Delta1 (OP9-DL1), we unexpectedly observed the development of large cells with cytoplasmic protrusions reminiscent of proplatelet production by megakaryocytes on OP9-DL1 stroma. These cells stained positive for acetylcholinesterase, specific for megakaryocyte, and displayed large polylobated nuclei. Flow cytometric analysis indicated a 10-fold increase in the number of CD41+ cells in OP9-DL1 co-cultures compared to parental OP9 co-cultures. Expression of a constitutively active intra-cellular Notch (ICN) mutant allowed differentiation of HSC into CD41+ cells in parental OP9 co-cultures without DL1 stimulation, whereas expression of a dominant-negative MAML1 (dnMAML1) mutant abrogated this effect in OP9-DL1 co-cultures. In addition, megakaryocyte differentiation in OP9-DL1 co-cultures was blocked by γ-secretase inhibitors treatment and rescued by ectopic expression of ICN. Global gene expression analysis demonstrated engagement of a megakaryopoietic transcriptional program when HSC were co-cultured with OP9-DL1 vs. OP9 stroma or OP9-DL1 stroma treated with γ-secretase inhibitor. Bone marrow transplantation experiments with ICN, resulted in enhanced megakaryopoiesis in vivo with increased MEP numbers and megakaryocyte colony formation. Furthermore, transplantation of bone marrow cells transduced with dnMAML1 significantly impaired megakaryopoiesis in vivo with a 4- to 7-fold decrease in maturing megakaryocytes. These findings demonstrate a positive regulatory role for Notch signaling in specification of megakaryocyte development, and indicate that Notch plays a complex role in cell fate decisions among myeloid progenitors. They suggest the possibility that inhibition of Notch signaling may have therapeutic potential in malignancies of the megakaryocytic lineage. Furthermore, Notch pathway stimulation could be of value in enhancing megakaryocyte growth in clinical contexts associated with severe thrombocytopenia, such as hematopoietic reconstitution following bone marrow transplantation or chemotherapy.


Blood ◽  
2012 ◽  
Vol 119 (22) ◽  
pp. 5239-5249 ◽  
Author(s):  
Hao Jin ◽  
Li Li ◽  
Jin Xu ◽  
Fenghua Zhen ◽  
Lu Zhu ◽  
...  

Abstract Proper cell fate choice in myelopoiesis is essential for generating correct numbers of distinct myeloid subsets manifesting a wide spectrum of subset-specific activities during development and adulthood. Studies have suggested that myeloid fate choice is primarily regulated by transcription factors; however, new intrinsic regulators and their underlying mechanisms remain to be elucidated. Zebrafish embryonic myelopoiesis gives rise to neutrophils and macrophages and represents a promising system to derive new regulatory mechanisms for myeloid fate decision in vertebrates. Here we present an in vivo study of cell fate specification during zebrafish embryonic myelopoiesis through characterization of the embryos with altered Pu.1, Runx1 activity alone, or their combinations. Genetic analysis shows that low and high Pu.1 activities determine embryonic neutrophilic granulocyte and macrophage fate, respectively. Inactivation and overexpression of Runx1 in zebrafish uncover Runx1 as a key embryonic myeloid fate determinant that favors neutrophil over macrophage fate. Runx1 is induced by high Pu.1 level and in turn transrepresses pu.1 expression, thus constituting a negative feedback loop that fashions a favorable Pu.1 level required for balanced fate commitment to neutrophils versus macrophages. Our findings define a Pu.1-Runx1 regulatory loop that governs the equilibrium between distinct myeloid fates by assuring an appropriate Pu.1 dosage.


2005 ◽  
Vol 16 (8) ◽  
pp. 3480-3487 ◽  
Author(s):  
Fabrice Roegiers ◽  
Lily Yeh Jan ◽  
Yuh Nung Jan

In Drosophila, asymmetric division occurs during proliferation of neural precursors of the central and peripheral nervous system (PNS), where a membrane-associated protein, Numb, is asymmetrically localized during cell division and is segregated to one of the two daughter cells (the pIIb cell) after mitosis. numb has been shown genetically to function as an antagonist of Notch signaling and also as a negative regulator of the membrane localization of Sanpodo, a four-pass transmembrane protein required for Notch signaling during asymmetric cell division in the CNS. Previously, we identified lethal giant larvae (lgl) as a gene required for numb-mediated inhibition of Notch in the adult PNS. In this study we show that Sanpodo is expressed in asymmetrically dividing precursor cells of the PNS and that Sanpodo internalization in the pIIb cell is dependent cytoskeletally associated Lgl. Lgl specifically regulates internalization of Sanpodo, likely through endocytosis, but is not required for the endocytosis Delta, which is a required step in the Notch-mediated cell fate decision during asymmetric cell division. Conversely, the E3 ubiquitin ligase neuralized is required for both Delta endocytosis and the internalization of Sanpodo. This study identifies a hitherto unreported role for Lgl as a regulator of Sanpodo during asymmetric cell division in the adult PNS.


2021 ◽  
Vol 27 ◽  
Author(s):  
Lydia Meder ◽  
Alexandra Florin ◽  
Luka Ozretić ◽  
Marieke Nill ◽  
Mirjam Koker ◽  
...  

Purpose: Abrogation of Notch signaling, which is pivotal for lung development and pulmonary epithelial cell fate decisions was shown to be involved in the aggressiveness and the differentiation of lung carcinomas. Additionally, the transcription factors YAP and TAZ which are involved in the Hippo pathway, were recently shown to be tightly linked with Notch signaling and to regulate the cell fate in epidermal stem cells. Thus, we aim to elucidate the effects of conditional Notch1 deficiency on carcinogenesis and TAZ expression in lung cancer.Methods: We investigated the effect of conditional Cre-recombinase mediated Notch1 knock-out on lung cancer cells in vivo using an autochthonous mouse model of lung adenocarcinomas driven by KrasLSL-G12V and comprehensive immunohistochemical analysis. In addition, we analyzed clinical samples and human lung cancer cell lines for TAZ expression and supported our findings by publicly available data from The Cancer Genome Atlas (TCGA).Results: In mice, we found induction of papillary adenocarcinomas and protrusions of tumor cells from the bronchiolar lining upon Notch1 deficiency. Moreover, the mutated Kras driven lung tumors with deleted Notch1 showed increased TAZ expression and focal nuclear translocation which was frequently observed in human pulmonary adenocarcinomas and squamous cell carcinomas of the lung, but not in small cell lung carcinomas. In addition, we used data from TCGA to show that putative inactivating NOTCH1 mutations co-occur with KRAS mutations and genomic amplifications in lung adenocarcinomas.Conclusion: Our in vivo study provides evidence that Notch1 deficiency in mutated Kras driven lung carcinomas contributes to lung carcinogenesis in a subgroup of patients by increasing TAZ expression who might benefit from TAZ signaling blockade.


2021 ◽  
Author(s):  
Elise Houssin ◽  
Mathieu Pinot ◽  
Karen Bellec ◽  
Roland Le Borgne

SummaryIn multiple cell lineages, Delta-Notch signaling regulates cell fate decisions owing to unidirectional signaling between daughter cells. In Drosophila pupal sensory organ lineage, Notch regulates pIIa/pIIb fate decision at cytokinesis. Notch and Delta that localize apically and basally at the pIIa-pIIb interface, are expressed at low levels and their residence time at the plasma membrane is in the order of the minute. How Delta can effectively interact with Notch to trigger signaling from a large plasma membrane remains poorly understood. Here, we report that the signaling interface possesses a unique apicobasal polarity with Par3/Bazooka localizing in the form of nano-clusters at the apical and basal level. Notch is preferentially targeted to the pIIa-pIIb interface where it co-clusters with Bazooka and the Notch cofactor Sanpodo. Clusters whose assembly relies on Bazooka and Sanpodo activities, are also positive for Neuralized, the E3 ligase required for Delta-activity. We propose that the nano-clusters act as snap buttons at the new pIIa-pIIb interface to allow efficient intra-lineage signaling.


PLoS ONE ◽  
2010 ◽  
Vol 5 (11) ◽  
pp. e14023 ◽  
Author(s):  
Maria A. Sartori da Silva ◽  
Jin-Ming Tee ◽  
Judith Paridaen ◽  
Anke Brouwers ◽  
Vincent Runtuwene ◽  
...  

Blood ◽  
2004 ◽  
Vol 103 (9) ◽  
pp. 3511-3515 ◽  
Author(s):  
Franziska Jundt ◽  
Kristina Schulze Pröbsting ◽  
Ioannis Anagnostopoulos ◽  
Gwendolin Muehlinghaus ◽  
Manik Chatterjee ◽  
...  

Abstract Notch receptors expressed on hematopoietic stem cells interact with their ligands on bone marrow stromal cells and thereby control cell fate decisions and survival. We recently demonstrated that Notch signaling is involved in proliferation and survival of B cell-derived tumor cells of classic Hodgkin disease and described a novel mechanism for the oncogenic capacity of Notch. In this study we investigated whether Notch signaling is involved in the tight interactions between neoplastic plasma cells and their bone marrow microenvironment, which are essential for tumor cell growth in multiple myeloma (MM). Here we demonstrate that Notch receptors and their ligand Jagged1 are highly expressed in cultured and primary MM cells, whereas nonneoplastic counterparts show low to undetectable levels of Notch. Functional data indicate that ligand-induced Notch signaling is a growth factor for MM cells and suggest that these interactions contribute to myelomagenesis in vivo. (Blood. 2004;103:3511-3515)


Sign in / Sign up

Export Citation Format

Share Document