Corticothalamic feedback sculpts visual spatial integration in mouse thalamus

2020 ◽  
Author(s):  
Gregory Born ◽  
Sinem Erisken ◽  
Felix A. Schneider ◽  
Agne Klein ◽  
Milad H. Mobarhan ◽  
...  

ABSTRACTEn route from retina to cortex, visual information travels through the dorsolateral geniculate nucleus of the thalamus (dLGN), where extensive cortico-thalamic (CT) feedback has been suggested to modulate spatial processing. How this modulation arises from direct excitatory and indirect inhibitory CT feedback components remains enigmatic. We show that in awake mice topographically organized cortical feedback modulates spatial integration in dLGN by sharpening receptive fields (RFs) and increasing surround suppression. Guided by a network model revealing wide-scale inhibitory CT feedback necessary to reproduce these effects, we targeted the visual sector of the thalamic reticular nucleus (visTRN) for recordings. We found that visTRN neurons have large receptive fields, show little surround suppression, and have strong feedback-dependent responses to large stimuli, making them an ideal candidate for mediating feedback-enhanced surround suppression in dLGN. We conclude that cortical feedback sculpts spatial integration in dLGN, likely via recruitment of neurons in visTRN.

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Cristina Soto-Sánchez ◽  
Xin Wang ◽  
Vishal Vaingankar ◽  
Friedrich T. Sommer ◽  
Judith A. Hirsch

2020 ◽  
Author(s):  
Nadia Parmhans ◽  
Anne Drury Fuller ◽  
Eileen Nguyen ◽  
Katherine Chuang ◽  
David Swygart ◽  
...  

AbstractMembers of the POU4F/Brn3 transcription factor family have an established role in the development of retinal ganglion cell types (RGCs), the projection sensory neuron conveying visual information from the mammalian eye to the brain. Our previous work using sparse random recombination of a conditional knock-in reporter allele expressing Alkaline Phosphatase (AP) and intersectional genetics had identified three types of Pou4f3/Brn3c positive (Brn3c+) RGCs. Here, we describe a novel Brn3cCre mouse allele generated by serial Dre to Cre recombination. We use this allele to explore the expression overlap of Brn3c with Brn3a and Brn3b and the dendritic arbor morphologies and visual stimulus properties of Brn3c+ RGC types. Furthermore, we explore Brn3c-expressing brain nuclei. Our analysis reveals a much larger number of Brn3c+ RGCs and more diverse set of RGC types than previously reported. The majority of RGCs having expressed Brn3c during development are still Brn3c positive in the adult, and all of them express Brn3a while only about half express Brn3b. Intersection of Brn3b and Brn3c expression highlights an area of increased RGC density, similar to an area centralis, corresponding to part of the binocular field of view of the mouse. Brn3c+ neurons and projections are present in multiple brain nuclei. Brn3c+ RGC projections can be detected in the Lateral Geniculate Nucleus (LGN), Pretectal Area (PTA) and Superior Colliculus (SC) but also in the thalamic reticular nucleus (TRN), a visual circuit station that was not previously described to receive retinal input. Most Brn3c+ neurons of the brain are confined to the pretectum and the dorsal midbrain. Amongst theses we identify a previously unknown Brn3c+ subdivision of the deep mesencephalic nucleus (DpMe). Thus, our newly generated allele provides novel biological insights into RGC type classification, brain connectivity and midbrain cytoarchitectonic, and opens the avenue for specific characterization and manipulation of these structures.


2011 ◽  
Vol 28 (5) ◽  
pp. 433-444
Author(s):  
THOMAS FITZGIBBON ◽  
NICK KIKUCHI

AbstractThe cingulate cortex (CG) and the adjacent region designated as the splenial visual area (SVA) project to areas of the extrageniculate thalamic system that are concerned with processing visual information. En route to the thalamus, they pass through the thalamic reticular nucleus (TRN), an important source of thalamic inhibition. We wished to determine whether SVA axon collaterals projected to the previously defined visual sector of the TRN or a separate projection zone and did this differ from the projection zone of CG. We iontophoretically injected different neuroanatomical tracers into several locations within CG/SVA and traced the labeled axons through the TRN. The CG and SVA have a projection zone that only partially overlaps the dorsorostral regions of the visuocortical projection zone; there was no evidence to suggest separate SVA and CG zones or tiers of label within the TRN. The projection formed only a weak topographic map in the TRN, which is largely defined in the rostrocaudal axis and is similar to that of the area 7 projection; both projections have a high degree of overlap in the dorsal TRN. We postulate that CG/SVA may be involved in the initiation of orientation behaviors via stimulation of thalamic nuclei and attentional mechanisms of the TRN.


1986 ◽  
Vol 55 (5) ◽  
pp. 1030-1043 ◽  
Author(s):  
A. Shosaku

Spontaneous activities of vibrissa-responding neurons in the rat ventrobasal complex (VB) and somatosensory part of the thalamic reticular nucleus (S-TR) were simultaneously recorded and subjected to cross-correlation analysis to investigate the functional organization of recurrent inhibitory action of the S-TR on VB neurons. Excitatory and/or inhibitory interactions were found between approximately 75% (25/34) of the pairs of S-TR and VB neurons with receptive fields (RFs) on the same vibrissa. In contrast, there was no significant interaction between 54 pairs of neurons having RFs on different vibrissae. Among the pairs of neurons with RFs on the same vibrissa, there were four types of correlations, which indicate the following connections: monosynaptic excitation from a VB to an S-TR neuron (7 pairs), monosynaptic inhibition from an S-TR to a VB neuron (10 pairs), reciprocal connection combining the above two types (7 pairs), and common excitation in addition to inhibition from an S-TR to a VB neuron (1 pair). Examples of divergence and convergence of connections between S-TR and VB neurons were demonstrated by testing one S-TR (VB) neuron with more than one VB (S-TR) neuron. Vibrissa-suppressed VB cells, which had exclusively inhibitory RFs, were included in eight pairs of the above samples. These VB cells were more likely to receive inhibitory inputs from S-TR neurons than other VB neurons. Cells with RFs on multiple vibrissae were included in the other 10 pairs. These multiple-vibrissa cells had no interaction with single-vibrissa cells but did with multiple-vibrissa cells. From the incidence of four types of correlation between S-TR and VB neurons with RFs on the same vibrissa, the following connection pattern is suggested: One S-TR neuron receives excitatory inputs from approximately 40% of the VB neurons with RFs on the same vibrissa and sends inhibitory outputs to approximately 55%. Since these two groups of VB neurons were overlapping, the S-TR neuron has reciprocal connections with approximately 20% of the VB neurons with RFs on the same vibrissa. The same estimate was applied to connectivity of one VB neuron. These results indicate that both inputs and outputs of S-TR neurons are precisely and topographically organized, although there is convergence to and divergence from a substantial number of VB neurons with RFs on the same vibrissa. It is proposed that the recurrent inhibitory circuit through the S-TR plays a role in improving discrimination of sensory information transmitted through the VB.


2014 ◽  
Vol 112 (1) ◽  
pp. 181-192 ◽  
Author(s):  
Vladimir Marlinski ◽  
Irina N. Beloozerova

This study examined the burst firing of neurons in the motor sector of the thalamic reticular nucleus (RE) of the cat. These neurons are inhibitory cells that project to the motor thalamus. The firing activity of RE neurons was studied during four behaviors: sleep, standing, walking on a flat surface, and accurate stepping on crosspieces of a horizontal ladder. Extracellularly recorded firing activity was analyzed in 58 neurons that were identified according to their receptive fields on the contralateral forelimb. All neurons generated bursts of spikes during sleep, half generated bursts of spikes during standing, and one-third generated bursts of spikes during walking. The majority of bursts were sequences of spikes with an exponential buildup of the firing rate followed by exponential decay with time constants in the range of 10–30 ms. We termed them “full-scale” bursts. All neurons also generated “atypical” bursts, in which the buildup of the firing rate deviated from the characteristic order. Burst firing was most likely to occur in neurons with receptive fields on the distal forelimb and least likely in neurons related to the proximal limb. Full-scale bursts were more frequent than atypical bursts during unconstrained walking on the flat surface. Bursts of both types occurred with similar probability during accurate stepping on the horizontal ladder, a task that requires forebrain control of locomotion. We suggest that transformations of the temporal pattern of bursts in the inhibitory RE neurons facilitate the tuning of thalamo-cortical signals to the complexity of ongoing locomotor tasks.


2021 ◽  
Vol 13 (3) ◽  
pp. 225-244
Author(s):  
Luis Carretié ◽  
Raghunandan K. Yadav ◽  
Constantino Méndez-Bértolo

Initial evaluation structures (IESs) currently proposed as the earliest detectors of affective stimuli (e.g., amygdala, orbitofrontal cortex, or insula) are high-order structures (a) whose response latency cannot account for the first visual cortex emotion-related response (~80 ms), and (b) lack the necessary infrastructure to locally analyze the visual features that define emotional stimuli. Several thalamic structures accomplish both criteria. The lateral geniculate nucleus (LGN), a first-order thalamic nucleus that actively processes visual information, with the complement of the thalamic reticular nucleus (TRN) are proposed as core IESs. This LGN–TRN tandem could be supported by the pulvinar, a second-order thalamic structure, and by other extrathalamic nuclei. The visual thalamus, scarcely explored in affective neurosciences, seems crucial in early emotional evaluation.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Baher A Ibrahim ◽  
Caitlin A Murphy ◽  
Georgiy Yudintsev ◽  
Yoshitaka Shinagawa ◽  
Matthew I Banks ◽  
...  

The mechanisms that govern thalamocortical transmission are poorly understood. Recent data have shown that sensory stimuli elicit activity in ensembles of cortical neurons that recapitulate stereotyped spontaneous activity patterns. Here, we elucidate a possible mechanism by which gating of patterned population cortical activity occurs. In this study, sensory-evoked all-or-none cortical population responses were observed in the mouse auditory cortex in vivo and similar stochastic cortical responses were observed in a colliculo-thalamocortical brain slice preparation. Cortical responses were associated with decreases in auditory thalamic synaptic inhibition and increases in thalamic synchrony. Silencing of corticothalamic neurons in layer 6 (but not layer 5) or the thalamic reticular nucleus linearized the cortical responses, suggesting that layer 6 corticothalamic feedback via the thalamic reticular nucleus was responsible for gating stochastic cortical population responses. These data implicate a corticothalamic-thalamic reticular nucleus circuit that modifies thalamic neuronal synchronization to recruit populations of cortical neurons for sensory representations.


2021 ◽  
Vol 15 ◽  
Author(s):  
Natsumi Y. Homma ◽  
Victoria M. Bajo

Sound information is transmitted from the ear to central auditory stations of the brain via several nuclei. In addition to these ascending pathways there exist descending projections that can influence the information processing at each of these nuclei. A major descending pathway in the auditory system is the feedback projection from layer VI of the primary auditory cortex (A1) to the ventral division of medial geniculate body (MGBv) in the thalamus. The corticothalamic axons have small glutamatergic terminals that can modulate thalamic processing and thalamocortical information transmission. Corticothalamic neurons also provide input to GABAergic neurons of the thalamic reticular nucleus (TRN) that receives collaterals from the ascending thalamic axons. The balance of corticothalamic and TRN inputs has been shown to refine frequency tuning, firing patterns, and gating of MGBv neurons. Therefore, the thalamus is not merely a relay stage in the chain of auditory nuclei but does participate in complex aspects of sound processing that include top-down modulations. In this review, we aim (i) to examine how lemniscal corticothalamic feedback modulates responses in MGBv neurons, and (ii) to explore how the feedback contributes to auditory scene analysis, particularly on frequency and harmonic perception. Finally, we will discuss potential implications of the role of corticothalamic feedback in music and speech perception, where precise spectral and temporal processing is essential.


2009 ◽  
Vol 101 (3) ◽  
pp. 1444-1462 ◽  
Author(s):  
Hiroki Tanaka ◽  
Izumi Ohzawa

Neurons with surround suppression have been implicated in processing high-order visual features such as contrast- or texture-defined boundaries and subjective contours. However, little is known regarding how these neurons encode high-order visual information in a systematic manner as a population. To address this issue, we have measured detailed spatial structures of classical center and suppressive surround regions of receptive fields of primary visual cortex (V1) neurons and examined how a population of such neurons allow encoding of various high-order features and shapes in visual scenes. Using a novel method to reconstruct structures, we found that the center and surround regions are often both elongated parallel to each other, reminiscent of on and off subregions of simple cells without surround suppression. These structures allow V1 neurons to extract high-order contours of various orientations and spatial frequencies, with a variety of optimal values across neurons. The results show that a wide range of orientations and widths of the high-order features are systematically represented by the population of V1 neurons with surround suppression.


2007 ◽  
Vol 97 (5) ◽  
pp. 3386-3395 ◽  
Author(s):  
Sunggu Yang ◽  
Charles L. Cox

The dorsal lateral geniculate nucleus (dLGN) is essential for the transfer of visual information from the retina to visual cortex, and inhibitory mechanisms can play a critical in regulating such information transfer. Nitric oxide (NO) is an atypical neuromodulator that is released in gaseous form and can alter neural activity without direct synaptic connections. Nitric oxide synthase (NOS), an essential enzyme for NO production, is localized in thalamic inhibitory neurons and cholinergic brain stem neurons that innervate the thalamus, although NO-mediated effects on thalamic inhibitory activity remain unknown. We investigated NO effects on inhibitory activity in dLGN using an in vitro slice preparation. The NO donor, SNAP, selectively potentiated the frequency, but not amplitude, of spontaneous inhibitory postsynaptic currents (sIPSCs) in thalamocortical relay neurons. This increase also persisted in tetrodotoxin (TTX), consistent with an increase in GABA release from presynaptic terminals. The SNAP-mediated actions were attenuated not only by the NO scavenger carboxy-PTIO but also by the guanylyl cyclase inhibitor ODQ. The endogenous NO precursor l-arginine produced actions similar to those of SNAP on sIPSC activity and these l-arginine–mediated actions were attenuated by the NOS inhibitor L-NMMA acetate. The SNAP-mediated increase in sIPSC activity was observed in both dLGN and ventrobasal thalamic nucleus (VB) neurons. Considering the lack of interneurons in rodent VB, the NO-mediated actions likely involve an increase in the output of axon terminals of thalamic reticular nucleus neurons. Our results indicate that NO upregulates thalamic inhibitory activity and thus these actions likely influence sensory information transfer through thalamocortical circuits.


Sign in / Sign up

Export Citation Format

Share Document