scholarly journals Computational Simulation to Assess Patient Safety of Uncompensated COVID-19 Two-patient Ventilator Sharing Using the Pulse Physiology Engine

Author(s):  
Jeffrey B. Webb ◽  
Aaron Bray ◽  
Philip K. Asare ◽  
Rachel B. Clipp ◽  
Yatin B. Mehta ◽  
...  

AbstractBackgroundThe COVID-19 pandemic is stretching medical resources internationally, including creating ventilator short-ages that complicate clinical and ethical situations. The possibility of needing to ventilate multiple patients with a single ventilator raises patient health and safety concerns. This simulation study explores patient compatibility and ventilator settings during multi-patient ventilation without the use of flow compensating resistances.MethodsA whole-body computational physiology model was used to simulate each patient on a ventilator. The primary model of a single patient with a dedicated ventilator was augmented to model two patients sharing a single ventilator. A range of ventilator settings and patient characteristics were simulated for paired patients. In addition to mechanical ventilation parameters, the full physiological simulation provides estimates of additional values for oxyhemoglobin saturation, arterial oxygen tension, and other patient parameters.FindingsThese simulations show patient outcome during multi-patient ventilation is most closely correlated to lung compliance, oxygenation index, oxygen saturation index, and endtidal carbon dioxide of individual patients. The simulated patient outcome metrics were satisfactory when the lung compliance difference between two patients was less than 12 cmH2O/mL, and the oxygen saturation index difference was less than 2 mmHg.InterpretationIn resource-limited regions of the world, the COVID-19 pandemic will result in equipment shortages. While single-patient ventilation is preferable, if unavailable, these simulations provide a conceptual framework for clinical patient selection guidelines if ventilator sharing is the only available alternative.FundingKitware employees were internally supported by Kitware. Bucknell and Geisinger participants contributed their time.Research in ContextEvidence before this studyIf numbers of patients requiring mechanical ventilation exceed the number of available ventilators in a surge, shared branched ventilator circuits have been proposed for sharing one ventilator by multiple patients. Only rudimentary laboratory or clinical studies have been reported. Testing over expected ranges of lung-chest wall compliance has not been found. Few clinical experiences of mechanical ventilation parameters employed for COVID-19 patients have been reported.Added value of this studyThe number of possible combinations of ventilation and physiological parameters is very large. Time and resource constraints do not permit conventional research. Computational simulation provides rapid sensitivity evaluation of several factors over a wide range of hypothetical ventilation conditions. Envelopes of evaluated parameters may provide reasonably estimated safety boundaries for clinicians compelled in an emergency surge to employ a poorly characterized practice. A previously well-vetted computational model for ventilation of a single patient by a dedicated ventilator has been modified to model the sharing of a single ventilator by two or more patients. Only pairings of two equally sized 70 kg patients are modeled in this report. These simulations provide estimates of effects on ventilation and blood oxygenation by clinically measurable values using conceivable mismatched patient lung compliance and oxygenation (diffusion and shunt).Implications of all the available evidenceThese estimates are for pressure mode ventilation using a single ventilator shared by branched breathing apparatus for paired patients. Individual patient flow restriction to compensate for compliance mismatch is not considered. Reasonable though arbitrary bounds of acceptable parameters may guide clinicians when determining pairings of patients with different physiological characteristics. Further laboratory testing and clinical experience will be needed to determine the validity or utility of these assessments. Different simulations will be needed for flow-compensated branches, more than two patients, and unmatched body habitus.

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242532
Author(s):  
Jeffrey B. Webb ◽  
Aaron Bray ◽  
Philip K. Asare ◽  
Rachel B. Clipp ◽  
Yatin B. Mehta ◽  
...  

Background The COVID-19 pandemic is stretching medical resources internationally, sometimes creating ventilator shortages that complicate clinical and ethical situations. The possibility of needing to ventilate multiple patients with a single ventilator raises patient health and safety concerns in addition to clinical conditions needing treatment. Wherever ventilators are employed, additional tubing and splitting adaptors may be available. Adjustable flow-compensating resistance for differences in lung compliance on individual limbs may not be readily implementable. By exploring a number and range of possible contributing factors using computational simulation without risk of patient harm, this paper attempts to define useful bounds for ventilation parameters when compensatory resistance in limbs of a shared breathing circuit is not possible. This desperate approach to shared ventilation support would be a last resort when alternatives have been exhausted. Methods A whole-body computational physiology model (using lumped parameters) was used to simulate each patient being ventilated. The primary model of a single patient with a dedicated ventilator was augmented to model two patients sharing a single ventilator. In addition to lung mechanics or estimation of CO2 and pH expected for set ventilation parameters (considerations of lung physiology alone), full physiological simulation provides estimates of additional values for oxyhemoglobin saturation, arterial oxygen tension, and other patient parameters. A range of ventilator settings and patient characteristics were simulated for paired patients. Findings To be useful for clinicians, attention has been directed to clinically available parameters. These simulations show patient outcome during multi-patient ventilation is most closely correlated to lung compliance, oxygenation index, oxygen saturation index, and end-tidal carbon dioxide of individual patients. The simulated patient outcome metrics were satisfactory when the lung compliance difference between two patients was less than 12 mL/cmH2O, and the oxygen saturation index difference was less than 2 mmHg. Interpretation In resource-limited regions of the world, the COVID-19 pandemic will result in equipment shortages. While single-patient ventilation is preferable, if that option is unavailable and ventilator sharing using limbs without flow resistance compensation is the only available alternative, these simulations provide a conceptual framework and guidelines for clinical patient selection.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shadi Ebrahimian ◽  
Fatemeh Homayounieh ◽  
Marcio A. B. C. Rockenbach ◽  
Preetham Putha ◽  
Tarun Raj ◽  
...  

AbstractTo compare the performance of artificial intelligence (AI) and Radiographic Assessment of Lung Edema (RALE) scores from frontal chest radiographs (CXRs) for predicting patient outcomes and the need for mechanical ventilation in COVID-19 pneumonia. Our IRB-approved study included 1367 serial CXRs from 405 adult patients (mean age 65 ± 16 years) from two sites in the US (Site A) and South Korea (Site B). We recorded information pertaining to patient demographics (age, gender), smoking history, comorbid conditions (such as cancer, cardiovascular and other diseases), vital signs (temperature, oxygen saturation), and available laboratory data (such as WBC count and CRP). Two thoracic radiologists performed the qualitative assessment of all CXRs based on the RALE score for assessing the severity of lung involvement. All CXRs were processed with a commercial AI algorithm to obtain the percentage of the lung affected with findings related to COVID-19 (AI score). Independent t- and chi-square tests were used in addition to multiple logistic regression with Area Under the Curve (AUC) as output for predicting disease outcome and the need for mechanical ventilation. The RALE and AI scores had a strong positive correlation in CXRs from each site (r2 = 0.79–0.86; p < 0.0001). Patients who died or received mechanical ventilation had significantly higher RALE and AI scores than those with recovery or without the need for mechanical ventilation (p < 0.001). Patients with a more substantial difference in baseline and maximum RALE scores and AI scores had a higher prevalence of death and mechanical ventilation (p < 0.001). The addition of patients’ age, gender, WBC count, and peripheral oxygen saturation increased the outcome prediction from 0.87 to 0.94 (95% CI 0.90–0.97) for RALE scores and from 0.82 to 0.91 (95% CI 0.87–0.95) for the AI scores. AI algorithm is as robust a predictor of adverse patient outcome (death or need for mechanical ventilation) as subjective RALE scores in patients with COVID-19 pneumonia.


2019 ◽  
Vol 11 (3) ◽  
pp. 3
Author(s):  
Rubén Ferreras Vega

El síndrome de distrés respiratorio agudo pediátrico (SDRAP) es una entidad propia y diferenciada del adulto. En el año 2.015, se llegó a un consenso en la conferencia Pediatric Acute Lung Injury Consensus Conference (PALICC); dónde se realizan distintas recomenciones según el acuerdo llegado entre sus integrantes. Así, para la estratificación de la gravedad del SDRAP, en pacientes en ventilación mecánica invasiva (VMI), se utiliza el índice de oxigenación (IO). En su defecto, si no es posible obtener la PaO2, utilizaremos el índice de saturación.  ABSTRACT Risk Stratification in pediatric acute respiratory distress syndrome Is necessary to make a diference between adults and children in acute respiratory distress sydrome. Different concepts have been introduced and modified. However, it was not until 2015, at the Acute Lung Injury Consensus Conference (PALICC) (1), when pediatric acute respiratory distress sydrome (PARDS) has been recognized as an entity well differentiated from adults. Acording to PALICC agreement, some recomendations about risk stratification in PARDS for patients receiving invasive mechanical ventilation, must be followed. Instead of Pao2/Fio2 ratio, It is recommended the use of oxygenation index (OI = ([Fio2 × mean airway pressure (Paw) × 100]/Pao2)), in order to know PARDS severity (strong agreement). When arterial oxygen pressure (Pa o2) is not avalible, oxygen saturation index (OSI= ([Fio2 × Paw × 100]/Spo2)) can be used (strong agreement). Based on these recommendations, mild PARDS is defined as an OI of 4–8 (oxygen saturation index = 5–7.5), moderate as an OI of 8–16 (oxygen saturation index = 7.5–12.3), and severe as an OI > 16 (oxygen saturation index > 12.3).  


Author(s):  
Vitaly O. Kheyfets ◽  
Steven Lammers ◽  
Jennifer Wagner ◽  
Karsten Bartels ◽  
Bradford Smith

AbstractThe COVID-19 pandemic is creating ventilator shortages in many countries that is sparking a conversation about placing multiple people on a single ventilator. However, on March 26th the American College of Chest Physicians (CHEST), along with other leading medical organizations, released a joint statement warning clinicians that attempting this technique could lead to poor outcomes and high mortality. Nevertheless, several hospitals around the United States and abroad are turning to this technique out of desperation (e.g. New York), but little data exists to guide their approach. The overall objective of this study is to utilize a computational model of mechanically ventilated lungs to assess how patient-specific lung mechanics and ventilator settings impact lung tidal volume (Vt).MethodsWe developed a single compartment computational model of four patients connected to a shared ventilator and validated it against a similar experimental study. We used this model to evaluate how patient-specific lung compliance (C) and resistance (R) would impact Vt under 5 ventilator settings of pre-set PIP, PEEP, and I:E ratio (suggested by Farkas, J.D. MD as an approach by hospitals to manage multiple patients on a single ventilator).ResultsOur computational model predicts Vt within 10% of experimental measurements. Using this model to perform a parametric study, we provide proof-of-concept for an algorithm to better match patients in different hypothetical scenarios of a single ventilator shared by more than one patient.ConclusionsAssigning patients to pre-set ventilators based on their lung mechanics could be used to overcome some of the legitimate concerns of placing multiple patients on a single ventilator. We emphasize that our results are currently based on a computational model that has not been validated against any pre-clinical/clinical data. Therefore, clinicians considering this approach should not look to our study as an exact estimate of predicted patient tidal volumes.


2021 ◽  
pp. 684-689
Author(s):  
Keiichi Yamaguchi ◽  
Tomohiro Imai ◽  
Haruka Yatsutani ◽  
Kazushige Goto

The present study investigated the effects of a combined hot and hypoxic environment on muscle oxygenation during repeated 15-s maximal cycling sprints. In a single-blind, cross-over study, nine trained sprinters performed three 15-s maximal cycling sprints interspersed with 7-min passive recovery in normoxic (NOR; 23℃, 50%, FiO2 20.9%), normobaric hypoxic (HYP; 23℃, FiO2 14.5%), and hot normobaric hypoxic (HH; 35℃, FiO2 14.5%) environments. Relative humidity was set to 50% in all trials. The vastus lateralis muscle oxygenation was evaluated during exercise using near-infrared spectroscopy. The oxygen uptake (VO2) and arterial oxygen saturation (SpO2) were also monitored. There was no significant difference in peak or mean power output among the three conditions. The reduction in tissue saturation index was significantly greater in the HH (-17.0 ± 2.7%) than in the HYP (-10.4 ± 2.8%) condition during the second sprint (p < 0.05). The average VO2 and SpO2 were significantly lower in the HYP (VO2 = 980 ± 52 mL/min, SpO2 = 82.9 ± 0.8%) and HH (VO2 = 965 ± 42 mL/min, SpO2 = 83.2 ± 1.2%) than in the NOR (VO2 = 1149 ± 40 mL/min, SpO2 = 90.6 ± 1.4%; p < 0.05) condition. In conclusion, muscle oxygen saturation was reduced to a greater extent in the HH than in the HYP condition during the second bout of three 15-s maximal cycling sprints, despite the equivalent hypoxic stress between HH and HYP.


2018 ◽  
Author(s):  
Joseph Banks

There are many pathophysiologic health effects associated with obesity, and the effects on normal respiratory physiology can be profound. The presence of increased adipose tissue can limit a patient’s functional residual capacity, reduce end expiratory lung volumes, and increase small airway closure. When exposed to general anesthesia with mechanical ventilation these physiologic changes can increase atelectasis development and increase the likelihood of ventilation-perfusion mismatching. Alveolar recruitment maneuvers are brief applications of positive airway pressure that are employed to recruit alveoli that have already collapsed and prevent new atelectasis formation. The purpose of this systematic review was to determine if the use of alveolar recruitment maneuvers are a safe and effective treatment strategy for managing the adult obese patient requiring general anesthesia with mechanical ventilation. The theoretical framework that guided this systematic review was the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. Randomized control trials that utilized alveolar recruitment maneuvers in adult obese patients were reviewed and appraised for inclusion in this systematic review. It was determined that alveolar recruitment maneuvers are a safe and effective strategy for minimizing atelectasis development in the adult obese patient undergoing general anesthesia. Alveolar recruitment maneuvers were associated with an improved intraoperative oxygenation, a decreased alveolar-arterial oxygen concentration gradient, and improved lung compliance. Furthermore, alveolar recruitment maneuver use demonstrated a decrease in atelectasis development measured via computed tomography and radiograph imaging. Application of these maneuvers in the obese patient during the perioperative period can improve ventilation-perfusion matching and decrease respiratory complications associated with atelectasis development.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shinshu Katayama ◽  
Jun Shima ◽  
Ken Tonai ◽  
Kansuke Koyama ◽  
Shin Nunomiya

AbstractRecently, maintaining a certain oxygen saturation measured by pulse oximetry (SpO2) range in mechanically ventilated patients was recommended; attaching the INTELLiVENT-ASV to ventilators might be beneficial. We evaluated the SpO2 measurement accuracy of a Nihon Kohden and a Masimo monitor compared to actual arterial oxygen saturation (SaO2). SpO2 was simultaneously measured by a Nihon Kohden and Masimo monitor in patients consecutively admitted to a general intensive care unit and mechanically ventilated. Bland–Altman plots were used to compare measured SpO2 with actual SaO2. One hundred mechanically ventilated patients and 1497 arterial blood gas results were reviewed. Mean SaO2 values, Nihon Kohden SpO2 measurements, and Masimo SpO2 measurements were 95.7%, 96.4%, and 96.9%, respectively. The Nihon Kohden SpO2 measurements were less biased than Masimo measurements; their precision was not significantly different. Nihon Kohden and Masimo SpO2 measurements were not significantly different in the “SaO2 < 94%” group (P = 0.083). In the “94% ≤ SaO2 < 98%” and “SaO2 ≥ 98%” groups, there were significant differences between the Nihon Kohden and Masimo SpO2 measurements (P < 0.0001; P = 0.006; respectively). Therefore, when using automatically controlling oxygenation with INTELLiVENT-ASV in mechanically ventilated patients, the Nihon Kohden SpO2 sensor is preferable.Trial registration UMIN000027671. Registered 7 June 2017.


HNO ◽  
2021 ◽  
Author(s):  
Patrick J. Schuler ◽  
Jens Greve ◽  
Thomas K. Hoffmann ◽  
Janina Hahn ◽  
Felix Boehm ◽  
...  

Abstract Background One of the main symptoms of severe infection with the new coronavirus‑2 (SARS-CoV-2) is hypoxemic respiratory failure because of viral pneumonia with the need for mechanical ventilation. Prolonged mechanical ventilation may require a tracheostomy, but the increased risk for contamination is a matter of considerable debate. Objective Evaluation of safety and effects of surgical tracheostomy on ventilation parameters and outcome in patients with COVID-19. Study design Retrospective observational study between March 27 and May 18, 2020, in a single-center coronavirus disease-designated ICU at a tertiary care German hospital. Patients Patients with COVID-19 were treated with open surgical tracheostomy due to severe hypoxemic respiratory failure requiring mechanical ventilation. Measurements Clinical and ventilation data were obtained from medical records in a retrospective manner. Results A total of 18 patients with confirmed SARS-CoV‑2 infection and surgical tracheostomy were analyzed. The age range was 42–87 years. All patients received open tracheostomy between 2–16 days after admission. Ventilation after tracheostomy was less invasive (reduction in PEAK and positive end-expiratory pressure [PEEP]) and lung compliance increased over time after tracheostomy. Also, sedative drugs could be reduced, and patients had a reduced need of norepinephrine to maintain hemodynamic stability. Six of 18 patients died. All surgical staff were equipped with N99-masks and facial shields or with powered air-purifying respirators (PAPR). Conclusion Our data suggest that open surgical tracheostomy can be performed without severe complications in patients with COVID-19. Tracheostomy may reduce invasiveness of mechanical ventilation and the need for sedative drugs and norepinehprine. Recommendations for personal protective equipment (PPE) for surgical staff should be followed when PPE is available to avoid contamination of the personnel.


2021 ◽  
pp. 039139882199938
Author(s):  
Matthew L Friedman ◽  
Samer Abu-Sultaneh ◽  
James E Slaven ◽  
Christopher W Mastropietro

Background: We aimed to use the Extracorporeal Life Support Organization registry to describe the current practice of rest mechanical ventilation setting in children receiving veno-venous extracorporeal membrane oxygenation (V-V ECMO) and to determine if relationships exist between ventilator settings and mortality. Methods: Data for patients 14 days to 18 years old who received V-V ECMO from 2012-2016 were reviewed. Mechanical ventilation data available includes mode and settings at 24 h after ECMO cannulation. Multivariable logistic regression analysis was performed to determine if rest settings were associated with mortality. Results: We reviewed 1161 subjects, of which 1022 (88%) received conventional mechanical ventilation on ECMO. Rest settings, expressed as medians (25th%, 75th%), are as follows: rate 12 breaths/minute (10, 17); peak inspiratory pressure (PIP) 22 cmH2O (20,27); positive end expiratory pressure (PEEP) 10 cmH2O (8, 10); and fraction of inspired oxygen (FiO2) 0.4 (0.37, 0.60). Survival to discharge was 68%. Higher ventilator FiO2 (odds ratio:1.13 per 0.1 increase, 95% confidence interval:1.04, 1.23), independent of arterial oxygen saturation, was associated with mortality. Conclusions: Current rest ventilator management for children receiving V-V ECMO primarily relies on conventional mechanical ventilation with moderate amounts of PIP, PEEP, and FiO2. Further study on the relationship between FiO2 and mortality should be pursued.


Sign in / Sign up

Export Citation Format

Share Document