scholarly journals RT-qPCR analyses on the osteogenic differentiation from human iPS cells: An investigation of reference genes

2020 ◽  
Author(s):  
Kensuke Okamura ◽  
Yusuke Inagaki ◽  
Takeshi K. Matsui ◽  
Masaya Matsubayashi ◽  
Tomoya Komeda ◽  
...  

AbstractReverse transcription quantitative PCR (RT-qPCR) is used to quantify gene expression and require standardization with reference genes. We sought to identify the reference genes best suited for experiments that induce osteogenic differentiation from human induced pluripotent stem (iPS) cells. They were cultured in an undifferentiated maintenance medium and after confluence, further cultured in an osteogenic differentiation medium for 28 days. RT-qPCR was performed on undifferentiation markers, osteoblast and osteocyte differentiation markers, and reference gene candidates. The expression stability of each reference gene candidate was ranked using four algorithms. General rankings identified TATA box binding protein (TBP) in the first place, followed by transferrin receptor (TFRC), ribosomal protein large P0 (RPLP0), and finally, beta-2-microglobulin (B2M), which was revealed as the least stable. Interestingly, universally used GAPDH and ACTB were found to be unsuitable. Our findings strongly suggest a need to evaluate the expression stability of reference gene candidates for each experiment.

2021 ◽  
Author(s):  
Zhongyi Yang ◽  
Rui Zhang ◽  
Zhichun Zhou

Abstract Background Quantitative real-time PCR (qRT-PCR) is a reliable and high-throughput technique for gene expression studies, but its accuracy depends on the expression stability of reference genes. Schima superba is a strong resistance and fast-growing timber specie. However, so far, reliable reference gene identifications have not been reported in S. superba. In this study, we screened and verified the stably expressed reference genes in different tissues of S. superba.Results Nineteen candidate reference genes were selected and evaluated for their expression stability in different tissues. Three software programs (geNorm, NormFinder, and BestKeeper) were used to evaluate the reference gene transcript stabilities, and comprehensive stability ranking was generated by the geometric mean method. Our results identified that SsuACT was the most stable reference gene, SsuACT + SsuRIB was the best reference genes combination for different tissues. Finally, the stable and less stable reference genes were verified using the SsuSND1 expression in different tissues.Conclusions This is the first report to verify the appropriate reference genes for normalizing gene expression in S. superba for different tissues, which will facilitate future elucidation of gene regulations in this species, and useful references for relative species.


1970 ◽  
Vol 28 (6) ◽  
Author(s):  
Fowotade Adeola

BACKGROUND: Polymerase Chain Reaction (PCR) has become an important diagnostic and research tool of modern molecular biology globally. Real-time PCR allows for rapid and reliable quantification of mRNA transcription. Reference genes are used as internal reaction control to normalise mRNA levels between different samples in order to allow for an exact comparison of mRNA transcription level.METHODS: In this study, twelve commonly used human reference genes were investigated in Human Embryonic Kidney Cell Lines (HEK293) using real-time qPCR with SYBR green. The genes included beta-2-microglobulin (B2M), glyceraldehyde-3- phosphate dehydrogenase (GAPDH), succinate dehydrogenase complex subunit A (SDHA), and tyrosine 3- monooxygenase/tryptophan 5-monooxygenase activation protein zeta polypeptide (YWHAZ). The stability of these reference genes was investigated using the geNorm application.RESULTS: The range of expression stability in the genes analysed was (from the most stable to the least stable): UBC, TOP1, ATP5B, CYC1, GAPDH, SDHA, YWHAZ, CTB, 18S, EIFA-2, B2M and RPL13A. The optimal number of reference targets in the experiment was calculated to be 2 (geNorm V<0.15) when comparing a normalization factor based on the 2 or 3 most stable targets).CONCLUSION: The expression stability varied greatly between the 12 candidate reference genes. UBC, TOP1, ATP5B, CYC1 and GAPDH respectively showed the highest stability in HEK293 cells based on both expression stability and expression level. Overall, our data suggest that UBC and TOP1show the least variation and the highest expression stability. This report validates the need for rational selection of reference genes for data normalization to ensure accuracy of quantitative PCR assays. 


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kensuke Okamura ◽  
Yusuke Inagaki ◽  
Takeshi K. Matsui ◽  
Masaya Matsubayashi ◽  
Tomoya Komeda ◽  
...  

Genes ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 647 ◽  
Author(s):  
Yi Luo ◽  
Gangzheng Wang ◽  
Chen Wang ◽  
Yuhua Gong ◽  
Yinbing Bian ◽  
...  

Lentinula edodes is the most consumed mushroom in Asia due to its nutritional and medicinal values, and the optimal reference gene is crucial for normalization of its gene expression analysis. Here, the expression stability of 18 candidate reference genes (CRGs) in L. edodes was analyzed by three statistical algorithms (geNorm, NormFinder and BestKeeper) under different stresses (heat, cadmium excess and Trichoderma atroviride infection), different substrates (straw, sawdust and corn stalk) and different development stages (mycelia, primordia and fruit bodies). Among the 18 CRGs, 28S, Actin and α-tub exhibited the highest expression stability in L. edodes under all conditions, while GPD, SPRYP and MSF showed the least stable expression. The best reference gene in different conditions was different. The pairwise variation values showed that two genes would be sufficient for accurate normalization under different conditions of L. edodes. This study will contribute to more accurate estimation of the gene relative expression levels under different conditions using the optimal reference gene in qRT-PCR (quantitative reverse transcription polymerase chain reaction) analysis.


2022 ◽  
Vol 23 (2) ◽  
pp. 886
Author(s):  
Jesús Cadenas ◽  
Susanne Elisabeth Pors ◽  
Dmitry Nikiforov ◽  
Mengxue Zheng ◽  
Cristina Subiran ◽  
...  

Human ovarian cells are phenotypically very different and are often only available in limited amounts. Despite the fact that reference gene (RG) expression stability has been validated in oocytes and other ovarian cells from several animal species, the suitability of a single universal RG in the different human ovarian cells and tissues has not been determined. The present study aimed to validate the expression stability of five of the most used RGs in human oocytes, cumulus cells, preantral follicles, ovarian medulla, and ovarian cortex tissue. The selected genes were glyceraldehyde 3-phosphate dehydrogenase (GAPDH), beta-2-microglobulin (B2M), large ribosomal protein P0 (RPLP0), beta-actin (ACTB), and peptidylprolyl isomerase A (PPIA). Overall, the stability of all RGs differed among ovarian cell types and tissues. NormFinder identified ACTB as the best RG for oocytes and cumulus cells, and B2M for medulla tissue and isolated follicles. The combination of two RGs only marginally increased the stability, indicating that using a single validated RG would be sufficient when the available testing material is limited. For the ovarian cortex, depending on culture conditions, GAPDH or ACTB were found to be the most stable genes. Our results highlight the importance of assessing RGs for each cell type or tissue when performing RT-qPCR analysis.


2021 ◽  
Author(s):  
Virginia Friedrichs ◽  
Anne Balkema-Buschmann ◽  
Anca Dorhoi ◽  
Gang Pei

Abstract Bats are the only mammals capable of powered flight and their body temperature can reach up to 42°C during flight. Additionally, bats display robust type I IFN interferon (IFN-I) responses and some species constitutively express IFN-α. Reference genes with stable expression under temperature oscillations and IFN-I release are therefore critical for normalization of quantitative reverse-transcription polymerase chain reaction (qRT-PCR) data in bats. The expression stability of reference genes in Rousettus aegyptiacus remains elusive, although this species is frequently used in the infection research. We selected ACTB, EEF1A1, GAPDH and PGK1 as candidate reference genes and evaluated their expression stability in various tissues and cells from this model bat species upon IFN-I treatment at 37°C and 40°C by qRT-PCR. We employed two statistical algorithms, BestKeeper and NormFinder, and found that EEF1A1 exhibited the highest stability under all tested conditions. ACTB and GAPDH displayed unstable expression at 40°C and upon IFN-I treatment, respectively. By normalizing to EEF1A1, we uncovered that GAPDH expression was significantly induced by IFN‑I in R. aegyptiacus. Our study identifies EEF1A1 as the most suitable reference gene for qRT-PCR studies and unveils the induction of GAPDH expression by IFN-I in R. aegyptiacus. These findings are pertinent to other bat species and even bear relevance for non-volant mammals that show physiological fluctuations of core body temperature.


2021 ◽  
Author(s):  
Haixia Zhu ◽  
Yongqiang Ma ◽  
Liang Cheng

Abstract In order to construct a RT-qPCR system suitable for response of Avena fatua L. to Trichoderma polysporum , and screen stable internal reference genes, GeNorm, NormFinder, BestKeeper and RefFinde were used to perform SYBR Green-based RT-qPCR analysis on 8 candidate internal reference genes ( 18S , 28S , TUA , UBC , ACT , GAPDH , TBP and EF-1 ) in A. fatua samples after inoculation of T. polysporum Strain HZ-31. The results showed that TBP , 18S and UBC were the most stable internal reference genes, TBP and TUA , TBP and GAPDH , 18S and TBP , UBC and 18S were the most suitable combination of the two internal reference genes, which could be used as the internal reference genes for functional gene expression analysis during the interaction between T. polysporum and A. fatua .


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Zhaoping Yan ◽  
Jinhang Gao ◽  
Xiuhe Lv ◽  
Wenjuan Yang ◽  
Shilei Wen ◽  
...  

The analysis of differences in gene expression is dependent on normalization using reference genes. However, the expression of many of these reference genes, as evaluated by quantitative RT-PCR, is upregulated in acute pancreatitis, so they cannot be used as the standard for gene expression in this condition. For this reason, we sought to identify a stable reference gene, or a suitable combination, for expression analysis in acute pancreatitis. The expression stability of 10 reference genes (ACTB, GAPDH, 18sRNA, TUBB, B2M, HPRT1, UBC, YWHAZ, EF-1α, and RPL-13A) was analyzed using geNorm, NormFinder, and BestKeeper software and evaluated according to variations in the raw Ct values. These reference genes were evaluated using a comprehensive method, which ranked the expression stability of these genes as follows (from most stable to least stable): RPL-13A, YWHAZ > HPRT1 > GAPDH > UBC > EF-1α> 18sRNA > B2M > TUBB > ACTB. RPL-13A was the most suitable reference gene, and the combination of RPL-13A and YWHAZ was the most stable group of reference genes in our experiments. The expression levels of ACTB, TUBB, and B2M were found to be significantly upregulated during acute pancreatitis, whereas the expression level of 18sRNA was downregulated. Thus, we recommend the use of RPL-13A or a combination of RPL-13A and YWHAZ for normalization in qRT-PCR analyses of gene expression in mouse models of acute pancreatitis.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 732
Author(s):  
Zhongyi Yang ◽  
Rui Zhang ◽  
Zhichun Zhou

Real-time quantitative PCR (RT-qPCR) is a reliable and high-throughput technique for gene expression studies, but its accuracy depends on the expression stability of reference genes. Schima superba is a fast-growing timber species with strong resistance. However, thus far, reliable reference gene identifications have not been reported in S. superba. In this study, 19 candidate reference genes were selected and evaluated for their expression stability in different tissues of S. superba. Three software programs (geNorm, NormFinder, and BestKeeper) were used to evaluate the reference gene transcript stabilities, and comprehensive stability ranking was generated by the geometric mean method. Our results show that SsuACT was the most stable reference gene and that SsuACT + SsuRIB was the best reference gene combination for different tissues. Finally, the stable and less stable reference genes were verified using SsuSND1 expression in different tissues. To our knowledge, this is the first report to verify appropriate reference genes for normalizing gene expression in S. superba for different tissues, which will facilitate the future elucidation of gene regulations in this species and useful references for relative species.


2021 ◽  
Author(s):  
Zhongyi Yang ◽  
Rui Zhang ◽  
Zhichun Zhou

Abstract Background: Real-time quantitative PCR (RT-qPCR) is a reliable and high-throughput technique for gene expression studies, but its accuracy depends on the expression stability of reference genes. Schima superba is a strong resistance and fast-growing timber specie. However, so far, reliable reference gene identifications have not been reported in S. superba. In this study, we screened and verified the stably expressed reference genes in different tissues of S. superba.Results: Nineteen candidate reference genes were selected and evaluated for their expression stability in different tissues. Three software programs (geNorm, NormFinder, and BestKeeper) were used to evaluate the reference gene transcript stabilities, and comprehensive stability ranking was generated by the geometric mean method. Our results identified that SsuACT was the most stable reference gene, SsuACT + SsuRIB was the best reference genes combination for different tissues. Finally, the stable and less stable reference genes were verified using the SsuSND1 expression in different tissues.Conclusions: This is the first report to verify the appropriate reference genes for normalizing gene expression in S. superba, which will facilitate future elucidation of gene regulations in this species, and useful references for relative species.


Sign in / Sign up

Export Citation Format

Share Document