scholarly journals iSCAN: An RT-LAMP-coupled CRISPR-Cas12 module for rapid, sensitive detection of SARS-CoV-2

Author(s):  
Zahir Ali ◽  
Rashid Aman ◽  
Ahmed Mahas ◽  
Gundra Sivakrishna Rao ◽  
Muhammad Tehseen ◽  
...  

AbstractThe COVID-19 pandemic caused by SARS-CoV-2 affects all aspects of human life. Detection platforms that are efficient, rapid, accurate, specific, sensitive, and user friendly are urgently needed to manage and control the spread of SARS-CoV-2. RT-qPCR based methods are the gold standard for SARS-CoV-2 detection. However, these methods require trained personnel, sophisticated infrastructure, and a long turnaround time, thereby limiting their usefulness. Reverse transcription-loop-mediated isothermal amplification (RT-LAMP), a one-step nucleic acid amplification method conducted at a single temperature, has been used for colorimetric virus detection. CRISPR-Cas12 and CRISPR-Cas13 systems, which possess collateral activity against ssDNA and RNA, respectively, have also been harnessed for virus detection. Here, we built an efficient, rapid, specific, sensitive, user-friendly SARS-CoV-2 detection module that combines the robust virus amplification of RT-LAMP with the specific detection ability of SARS-CoV-2 by CRISPR-Cas12. Furthermore, we combined the RT-LAMP-CRISPR-Cas12 module with lateral flow cells to enable highly efficient point-of-care SARS-CoV-2 detection. Our iSCAN SARS-CoV-2 detection module, which exhibits the critical features of a robust molecular diagnostic device, should facilitate the effective management and control of COVID-19.

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 697
Author(s):  
Siming Lu ◽  
Sha Lin ◽  
Hongrui Zhang ◽  
Liguo Liang ◽  
Shien Shen

Respiratory viral infections threaten human life and inflict an enormous healthcare burden worldwide. Frequent monitoring of viral antibodies and viral load can effectively help to control the spread of the virus and make timely interventions. However, current methods for detecting viral load require dedicated personnel and are time-consuming. Additionally, COVID-19 detection is generally relied on an automated PCR analyzer, which is highly instrument-dependent and expensive. As such, emerging technologies in the development of respiratory viral load assays for point-of-care (POC) testing are urgently needed for viral screening. Recent advances in loop-mediated isothermal amplification (LAMP), biosensors, nanotechnology-based paper strips and microfluidics offer new strategies to develop a rapid, low-cost, and user-friendly respiratory viral monitoring platform. In this review, we summarized the traditional methods in respiratory virus detection and present the state-of-art technologies in the monitoring of respiratory virus at POC.


2018 ◽  
Vol 10 (471) ◽  
pp. eaat0944 ◽  
Author(s):  
David Sebba ◽  
Alexander G. Lastovich ◽  
Melody Kuroda ◽  
Eric Fallows ◽  
Joshua Johnson ◽  
...  

Hemorrhagic fever outbreaks such as Ebola are difficult to detect and control because of the lack of low-cost, easily deployable diagnostics and because initial clinical symptoms mimic other endemic diseases such as malaria. Current molecular diagnostic methods such as polymerase chain reaction require trained personnel and laboratory infrastructure, hindering diagnostics at the point of need. Although rapid tests such as lateral flow can be broadly deployed, they are typically not well-suited for differentiating among multiple diseases presenting with similar symptoms. Early detection and control of Ebola outbreaks require simple, easy-to-use assays that can detect and differentiate infection with Ebola virus from other more common febrile diseases. Here, we developed and tested an immunoassay technology that uses surface-enhanced Raman scattering (SERS) tags to simultaneously detect antigens from Ebola, Lassa, and malaria within a single blood sample. Results are provided in <30 min for individual or batched samples. Using 190 clinical samples collected from the 2014 West African Ebola outbreak, along with 163 malaria positives and 233 negative controls, we demonstrated Ebola detection with 90.0% sensitivity and 97.9% specificity and malaria detection with 100.0% sensitivity and 99.6% specificity. These results, along with corresponding live virus and nonhuman primate testing of an Ebola, Lassa, and malaria 3-plex assay, indicate the potential of the SERS technology as an important tool for outbreak detection and clinical triage in low-resource settings.


2020 ◽  
Vol 58 (8) ◽  
Author(s):  
Atreyee Basu ◽  
Tatyana Zinger ◽  
Kenneth Inglima ◽  
Kar-mun Woo ◽  
Onome Atie ◽  
...  

ABSTRACT The recent emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has posed formidable challenges for clinical laboratories seeking reliable laboratory diagnostic confirmation. The swift advance of the crisis in the United States has led to Emergency Use Authorization (EUA) facilitating the availability of molecular diagnostic assays without the more rigorous examination to which tests are normally subjected prior to FDA approval. Our laboratory currently uses two real-time reverse transcription-PCR (RT-PCR) platforms, the Roche Cobas SARS-CoV2 and the Cepheid Xpert Xpress SARS-CoV-2. The two platforms demonstrate comparable performances; however, the run times for each assay are 3.5 h and 45 min, respectively. In search for a platform with a shorter turnaround time, we sought to evaluate the recently released Abbott ID Now COVID-19 assay, which is capable of producing positive results in as little as 5 min. We present here the results of comparisons between Abbott ID Now COVID-19 and Cepheid Xpert Xpress SARS-CoV-2 using nasopharyngeal swabs transported in viral transport media and comparisons between Abbott ID Now COVID-19 and Cepheid Xpert Xpress SARS-CoV-2 using nasopharyngeal swabs transported in viral transport media for Cepheid and dry nasal swabs for Abbott ID Now. Regardless of method of collection and sample type, Abbott ID Now COVID-19 had negative results in a third of the samples that tested positive by Cepheid Xpert Xpress when using nasopharyngeal swabs in viral transport media and 45% when using dry nasal swabs.


2013 ◽  
Vol 59 (2) ◽  
pp. 436-439 ◽  
Author(s):  
Martin Jensen Søe ◽  
Mikkel Rohde ◽  
Jens Mikkelsen ◽  
Peter Warthoe

BACKGROUND Nucleic acid tests that can simultaneously detect multiple targets with high sensitivity, specificity, and speed are highly desirable. To meet this need, we developed a new approach we call the isoPCR method. METHODS The isoPCR method is a 2-stage nested-like nucleic acid amplification method that combines a single multiplex preamplification PCR with subsequent distinct detection of specific targets by use of isothermal amplification. We compared isoPCR to nested quantitative PCR (qPCR), loop-mediated isothermal amplification (LAMP), and nested LAMP (PCR followed by LAMP), for detection of DNA from Candida glabrata. We evaluated the method's multiplex capability for detecting low copy numbers of pathogens commonly involved in sepsis. RESULTS IsoPCR provided detection of 1 copy of Candida glabrata, an LOD that was 5-fold lower than a nested qPCR assay (5 copies), while the amplification time was simultaneously halved. Similarly, the LOD for isoPCR was lower than that for a LAMP assay (1000 copies) and a nested LAMP assay (5 copies). IsoPCR required recognition of 6 regions for detection, thereby providing a theoretically higher specificity compared to nested qPCR (4 regions). The isoPCR multiplexing capability was demonstrated by simultaneous detection of 4 pathogens with individual LODs of 10 copies or fewer. Furthermore, the specificity of isoPCR was demonstrated by successful pathogen detection from samples with more than 1 pathogen present. CONCLUSIONS IsoPCR provides a molecular diagnostic tool for multiplex nucleic acid detection, with an LOD down to 1 copy, high theoretical specificity, and halving of the amplification time compared to a nested qPCR assay.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1582
Author(s):  
Qin Huang ◽  
Xiaohui Shan ◽  
Ranran Cao ◽  
Xiangyu Jin ◽  
Xue Lin ◽  
...  

A two-stage isothermal amplification method, which consists of a first-stage basic recombinase polymerase amplification (RPA) and a second-stage fluorescence loop-mediated isothermal amplification (LAMP), as well as a microfluidic-chip-based portable system, were developed in this study; these enabled parallel detection of multiplex targets in real time in around one hour, with high sensitivity and specificity, without cross-contamination. The consumption of the sample and the reagent was 2.1 μL and 10.6 μL per reaction for RPA and LAMP, respectively. The lowest detection limit (LOD) was about 10 copies. The clinical amplification of about 40 nasopharyngeal swab samples, containing 17 SARS-CoV-2 (severe acute respiratory syndrome coronavirus) and 23 measles viruses (MV), were parallel tested by using the microfluidic chip. Both clinical specificity and sensitivity were 100% for MV, and the clinical specificity and sensitivity were 94.12% and 95.83% for SARS-CoV-2, respectively. This two-stage isothermal amplification method based on the microfluidic chip format offers a convenient, clinically parallel molecular diagnostic method, which can identify different nucleic acid samples simultaneously and in a timely manner, and with a low cost of the reaction reagent. It is especially suitable for resource-limited areas and point-of-care testing (POCT).


1999 ◽  
Vol 37 (2) ◽  
pp. 436-437 ◽  
Author(s):  
Harald H. Kessler ◽  
Donald Jungkind ◽  
Evelyn Stelzl ◽  
Sue Direnzo ◽  
Srinivas K. Vellimedu ◽  
...  

The use of AMPLILINK version 1.0 software was evaluated for the operation and control of one COBAS AMPLICOR instrument and for two COBAS AMPLICOR instruments run simultaneously to perform and detect nucleic acid amplification reactions. A total of 3,384 results were analyzed. The initial accuracy of the results was 99.91%. Three errors of omission of transfer of data from the COBAS AMPLICOR to the AMPLILINK system were observed. Two of these errors were from a single specimen, where both the analyte and internal control results were not transmitted. These errors did not interfere with the correctness of any other data. There were no interruptions of runs, and no data were mixed. AMPLILINK increased convenience, saved labor, and was found to be a very useful addition for clinical laboratories performing molecular-diagnostic procedures with the COBAS AMPLICOR system.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Nazifah Ariffin ◽  
Nor Azah Yusof ◽  
Jaafar Abdullah ◽  
Siti Fatimah Abd Rahman ◽  
Nurul Hanun Ahmad Raston ◽  
...  

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis. Detection and control of infectious diseases is a major problem, especially in developing countries. Lateral flow immunoassay (LFIA) has been introduced as a handheld immunoassay-based point-of-care platform for an automated detection of TB. The CFP10-ESAT6 antigen of M. tuberculosis was used as the target in early detection of TB using LFIA strip-based POC strategy. An interesting platform based on optical signals is implemented as a colour change in the detection area that is visible to the naked eye. The gold nanoparticles (AuNPs) were used as the colour probe for the detection of a target of interest. The high-resolution transmission electron microscopy (HRTEM) image and ultraviolet-visible spectrophotometer (UV-Vis) analysis confirmed that the synthesized AuNPs were appropriate for the immunoassay designed. The platform consists of AuNPs conjugated with specific antibodies (Ab) to capture the antigen of M. tuberculosis. Under the capillary effect, sandwich immunoreactions of AuNP-Ab-antigen were performed on the test pad of the immunostrip, which can be observed by the colour signal on the test line of the strip with a short assay time. Furthermore, the newly developed biosensor was utilized in CFP10-ESAT6 antigen detection in human sputum specimens with satisfactory results. The characteristic coloured bands enable visual detection (naked eye) of target analyte without instrumentation. This noninvasive diagnose system which is sputum-based detection could provide user-friendly and affordable diagnostic tests in developing countries.


2020 ◽  
Vol 58 (3) ◽  
Author(s):  
Neena Kanwar ◽  
Jeffrey Michael ◽  
Kathryn Doran ◽  
Emily Montgomery ◽  
Rangaraj Selvarangan

ABSTRACT Early diagnosis of influenza (Flu) is critical for patient management and infection control. The ID Now influenza A & B 2 (ID Now) assay (Abbott Laboratories), Cobas influenza A/B nucleic acid test (LIAT; Roche Molecular Systems, Inc.), and Xpert Xpress Flu (Xpert; Cepheid) are rapid, point-of-care molecular assays for Flu virus detection. The study aim was to compare the performances of these three commercially available Clinical Laboratory Improvement Amendments (CLIA)-waived Flu virus assays. We prospectively enrolled 201 children <18 years old from January to April 2018 and collected nasopharyngeal swab specimens in viral medium. Aliquots were frozen for testing on different diagnostic platforms, as per the manufacturers’ instructions. CDC Flu A/B PCR was used as a reference method to evaluate the performances of these three platforms. Among the 201 specimens tested, the CDC Flu A/B PCR assay detected Flu A/B virus in 107 samples (Flu A virus, 73 samples; Flu B virus, 36 samples; dual Flu A/B virus positive, 2 samples), while the ID Now virus detected 102 samples (Flu A virus, 69 samples; Flu B virus, 37 samples; dual Flu A/B virus positive, 4 samples; invalid rate, 1/201 [0.5%]), the LIAT detected 112 samples (Flu A virus, 74 samples; Flu B virus, 38 samples; invalid rate, 11/201 [5.5%]), and the Xpert assay detected 112 samples (Flu A virus, 76 samples; Flu B virus, 36 samples; invalid rate, 6/201 [3.0%]). The overall sensitivities for the ID Now assay, LIAT, and Xpert assay for Flu A virus detection (93.2%, 100%, and 100%, respectively) and Flu B virus detection (97.2%, 94.4%, and 91.7%, respectively) were comparable. The specificity for Flu A and B virus detection by all methods was >97%. These molecular assays had higher sensitivity than did a historical standard-of-care test from the BD Veritor antigen test (Flu A virus, 79.5%; Flu B virus, 66.7%).


Author(s):  
Ali A. Rabaan ◽  
Shamsah H. Al-Ahmed ◽  
Ranjit Sah ◽  
Ruchi Tiwari ◽  
Mohd. Iqbal Yatoo ◽  
...  

A novel coronavirus (SARS-CoV-2), causing an emerging coronavirus disease (COVID-19), first detected in Wuhan City, Hubei Province, China has resulted in an outbreak in China which has taken a catastrophic turn with high toll rates in China and subsequently spreading across the globe. The rapid spread of this virus to more than 175 countries while affecting nearly 500,000 persons and causing more than 22,000 human deaths, it has resulted in a pandemic situation in the world. The SARS-CoV-2 virus belongs to the genus Betacoronavirus, like MERS-CoV and SARS-CoV, all of which originated in bats. It is highly contagious, causing symptoms like fever, dyspnea, asthenia and pneumonia, thrombocytopenia and the severely infected patients succumb to the disease. Coronaviruses (CoVs) among all known RNA viruses have the largest genomes ranging from 26 to 32 kb in length. Extensive research has been conducted to understand the molecular basis of the SARS-CoV-2 infection and evolution, develop effective therapeutics, antiviral drugs and vaccines, and to design rapid and confirmatory viral diagnostics as well as adopt appropriate prevention and control strategies. Till date, no clinically proclaimed, proven therapeutic antibodies or specific drugs and therapeutics, and vaccines have turned up. Several molecular diagnostic tests such as Real Time-PCR, isothermal loop-mediated amplification of coronavirus (i-LACO), full genome analysis by next-generation sequencing (NGS), multiplex nucleic acid amplification, and microarray-based assays are in use currently for the laboratory confirmation of this CoV infection. In this review article, we describe the basic molecular organization and phylogenetic analysis of the coronaviruses, including the SARS-CoV-2, and recent advances in diagnosis and vaccine development in brief and focusing mainly on developing potential therapeutic options that can be explored to manage this pandemic virus infection, which would help in valid countering of COVID-19.


Sexual Health ◽  
2019 ◽  
Vol 16 (4) ◽  
pp. 314 ◽  
Author(s):  
Claire C. Bristow ◽  
Sheldon R. Morris ◽  
Susan J. Little ◽  
Sanjay R. Mehta ◽  
Jeffrey D. Klausner

Background Most studies evaluating extragenital testing performance for Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) detection by the Xpert® CT/NG show high per cent agreement with comparison assays; however, the precision around positive per cent agreement is low and thus the values that have been reported are not highly informative. Therefore, a systematic review was conducted and data from five studies were combined to better assess positive per cent agreement. Methods: The literature indexed on PubMed.gov was searched. Included studies were those that were an evaluation of the Xpert CT/NG assay with rectal and/or pharyngeal specimen types compared with another nucleic acid amplification test (NAAT), the Aptima transcription mediated amplification assay. A full Bayesian method was used for bivariate fixed-effect meta-analysis of positive and negative per cent agreement and pooled estimates (and 95% confidence intervals (CI)) were presented for each. Results: The pooled positive and negative per cent agreement for detection of CT in rectal specimens was 89.72% (95% CI: 84.97%, 93.64%) and 99.23% (95% CI: 98.74%, 99.60%), and in pharyngeal specimens, they were 89.96% (95% CI: 66.38%, 99.72%) and 99.62% (95% CI: 98.95%, 99.95%) respectively. For NG detection in rectal specimens, the pooled positive and negative per cent agreement was 92.75% (95% CI: 87.91%, 96.46%) and 99.75% (95% CI: 99.46%, 99.93%), and in pharyngeal specimens, they were 92.51% (95% CI: 85.84%, 97.18%) and 98.56% (95% CI: 97.69%, 99.23%) respectively. Conclusions: It was found that the Xpert CT/NG assay performed similarly to the Aptima transcription mediated amplification assay for the detection of CT and NG in extragenital specimens. The Xpert assay has the benefit of providing faster results at the point-of-care, thus reducing the turnaround time for results, potentially enabling same-day treatment.


Sign in / Sign up

Export Citation Format

Share Document