scholarly journals Hyperkalemia, not apoptosis, accurately predicts chilling injury in individual locusts

2020 ◽  
Author(s):  
Jessica Carrington ◽  
Mads Kuhlmann Andersen ◽  
Kaylen Brzezinski ◽  
Heath MacMillan

AbstractDuring prolonged or severe chilling, the majority of insects accrue chilling injuries that are typically quantified by scoring neuromuscular function after rewarming. In the cold, these chill susceptible insects, like the migratory locust (Locusta migratoria) suffer a loss of ion and water balance that is hypothesized to initiate cell death. Whether apoptotic or necrotic cell death pathways are responsible for this chilling injury is unclear. Here, we use a caspase-3 specific assay to indirectly quantify apoptosis in three locust tissues (muscle, nerves, and midgut) following prolonged chilling and recovery from an injury-inducing cold exposure. Furthermore, we obtain matching measurements of injury, hemolymph [K+], and muscle caspase-3 activity in individual locusts to gain further insight into mechanistic nature of chilling injury. We hypothesized that apoptotic cell death in both muscle and nerve tissue drives motor defects following cold exposure in insects, and that there would be a strong association between cold- induced injury, hyperkalemia, and muscle caspase-3 activity. We found a significant increase in muscle caspase-3 activity, but no such increase was observed in either nervous or gut tissue from the same animals, suggesting that chill injury primarily relates to apoptotic muscle cell death. However, the levels of chilling injury measured at the whole animal level prior to tissue sampling were strongly correlated with the degree of hemolymph hyperkalemia, but not apoptosis. These results support the notion that cold-induced ion balance disruption triggers cell death but also that apoptosis is not the main cell death pathway driving injury in the cold.Significance StatementTemperature has profound effects on animal fitness and sets limits to animal distribution. To understand and model insect responses to climate, we need to know how temperature sets limits to their survival. There is strong evidence that a collapse of ion and water balance occurs in insects in the cold, and it is generally held that the resulting cold injury is caused by activation of programmed cell death (apoptosis). Here, we directly test this idea and show for the first time that although the loss of ion balance is a strong predictor of individual survival outcomes, apoptosis is not the primary cause of cold-induced injury.

2020 ◽  
Vol 287 (1941) ◽  
pp. 20201663
Author(s):  
Jessica Carrington ◽  
Mads Kuhlmann Andersen ◽  
Kaylen Brzezinski ◽  
Heath A. MacMillan

There is a growing appreciation that insect distribution and abundance are associated with the limits of thermal tolerance, but the physiology underlying thermal tolerance remains poorly understood. Many insects, like the migratory locust ( Locusta migratoria ), suffer a loss of ion and water balance leading to hyperkalaemia (high extracellular [K + ]) in the cold that indirectly causes cell death. Cells can die in several ways under stress, and how they die is of critical importance to identifying and understanding the nature of thermal adaptation. Whether apoptotic or necrotic cell death pathways are responsible for low-temperature injury is unclear. Here, we use a caspase-3 specific assay to indirectly quantify apoptotic cell death in three locust tissues (muscle, nerves and midgut) following prolonged chilling and recovery from an injury-inducing cold exposure. Furthermore, we obtain matching measurements of injury, extracellular [K + ] and muscle caspase-3 activity in individual locusts to gain further insight into the mechanistic nature of chilling injury. We found a significant increase in muscle caspase-3 activity, but no such increase was observed in either nervous or gut tissue from the same animals, suggesting that chill injury primarily relates to muscle cell death. Levels of chilling injury measured at the whole animal level, however, were strongly correlated with the degree of haemolymph hyperkalaemia, and not apoptosis. These results support the notion that cold-induced ion balance disruption triggers cell death but also that apoptosis is not the main form of cell damage driving low-temperature injury.


2015 ◽  
Vol 282 (1817) ◽  
pp. 20151483 ◽  
Author(s):  
Heath A. MacMillan ◽  
Erik Baatrup ◽  
Johannes Overgaard

Chilling injury and death are the ultimate consequence of low temperature exposure for chill susceptible insects, and low temperature tolerance is considered one of the most important factors determining insect distribution patterns. The physiological mechanisms that cause chilling injury are unknown, but chronic cold exposure that causes injury is consistently associated with elevated extracellular [K + ], and cold tolerant insects possess a greater capacity to maintain ion balance at low temperatures. Here, we use the muscle tissue of the migratory locust ( Locusta migratoria ) to examine whether chill injury occurs during cold exposure or following return to benign temperature and we specifically examine if elevated extracellular [K + ], low temperature, or a combination thereof causes cell death. We find that in vivo chill injury occurs during the cold exposure (when extracellular [K + ] is high) and that there is limited capacity for repair immediately following the cold stress. Further, we demonstrate that that high extracellular [K + ] causes cell death in situ , but only when experienced at low temperatures. These findings strongly suggest that that the ability to maintain ion (particularly K + ) balance is critical to insect low temperature survival, and highlight novel routes of study in the mechanisms regulating cell death in insects in the cold.


2021 ◽  
Vol 22 (4) ◽  
pp. 2006
Author(s):  
Mi Jin Kim ◽  
Jinhong Park ◽  
Jinho Kim ◽  
Ji-Young Kim ◽  
Mi-Jin An ◽  
...  

Mercury is one of the detrimental toxicants that can be found in the environment and exists naturally in different forms; inorganic and organic. Human exposure to inorganic mercury, such as mercury chloride, occurs through air pollution, absorption of food or water, and personal care products. This study aimed to investigate the effect of HgCl2 on cell viability, cell cycle, apoptotic pathway, and alters of the transcriptome profiles in human non-small cell lung cancer cells, H1299. Our data show that HgCl2 treatment causes inhibition of cell growth via cell cycle arrest at G0/G1- and S-phase. In addition, HgCl2 induces apoptotic cell death through the caspase-3-independent pathway. Comprehensive transcriptome analysis using RNA-seq indicated that cellular nitrogen compound metabolic process, cellular metabolism, and translation for biological processes-related gene sets were significantly up- and downregulated by HgCl2 treatment. Interestingly, comparative gene expression patterns by RNA-seq indicated that mitochondrial ribosomal proteins were markedly altered by low-dose of HgCl2 treatment. Altogether, these data show that HgCl2 induces apoptotic cell death through the dysfunction of mitochondria.


2001 ◽  
Vol 79 (11) ◽  
pp. 953-958 ◽  
Author(s):  
Ellyawati Candra ◽  
Kimihiro Matsunaga ◽  
Hironori Fujiwara ◽  
Yoshihiro Mimaki ◽  
Yutaka Sashida ◽  
...  

Two steroidal saponins, tigogenin hexasaccharide-1 (TGHS-1, (25R)-5α-spirostan-3β-yl 4-O-[2-O-[3-O- (α-L-rhamnopyranosyl)-β-D-glucopyranosyl]-3-O-[4-O-(α-L-rhamnopyranosyl)-β-D-glucopyranosyl]-β-D-glucopyranosyl]- β-D-galactopyranoside) and tigogenin hexasaccharide-2 (TGHS-2, (25R)-5α-spirostan-3β-yl 4-O-[2-O-[3-O- (β-D-glucopyranosyl)-β-D-glucopyranosyl]-3-O-[4-O-(α-L-rhamnopyranosyl)-β-D-glucopyranosyl]-β-D-glucopyranosyl]- β-D-galactopyranoside), were isolated from the fresh bulbs of Camassia cusickii. In murine leukemic L1210 cells, both compounds showed cytotoxicity with an EC50 value of 0.06 µM. The morphological observation revealed that TGHS-1 and TGHS-2 induced shrinkage in cell soma and chromatin condensation, suggesting apoptotic cell death. The cell death was confirmed to be apoptosis by Annexin V binding to phosphatidylserine in the cell membrane and excluding propidium iodide. A typical apoptotic DNA ladder and the cleavage of caspase-3 were observed after treatment with TGHS-1 and TGHS-2. In the presence of both the compounds, cells with sub-G1 DNA content were detected by flow cytometric analysis, indicating that TGHS-1 and TGHS-2 (each EC50 value of 0.1 µM) are the most powerful apoptotic saponins known. These results suggest that TGHS-1 and TGHS-2 induce apoptotic cell death through caspase-3 activation.Key words: steroidal saponin, tigogenin hexasaccharide, apoptosis, DNA fragmentation, murine leukemic L1210 cells.


Stroke ◽  
2013 ◽  
Vol 44 (suppl_1) ◽  
Author(s):  
Sweena Parmar ◽  
Xiaokun Geng ◽  
Changya Peng ◽  
Murali Guthikonda ◽  
Yuchuan Ding

Objectives: Normobaric oxygenation (NBO) has been shown to provide neuroprotection in vivo and in vitro . Yet, a recent Phase 2 clinical trial investigating NBO therapy in acute ischemic stroke was terminated due to questionable therapeutic benefit. NBO therapy alone may be insufficient to produce improved outcomes. In our recent study, we demonstrated a strong neuroprotective effect of ethanol at a dose of 1.5 g/kg (equivalent to the human legal driving limit). In this study, we sought to identify whether low-dose ethanol administration enhances the neuroprotection offered by NBO and whether combined administration of NBO with ethanol is associated with reduced apoptosis. Methods: Sprague-Dawley rats were subjected to right middle cerebral artery occlusion (MCAO) for 2 h, followed by reperfusion. Ischemic animals received either an intraperitoneal injection of 1.0 g/kg ethanol, 2 h of 100% NBO, or both ethanol and NBO. The Cell Death Detection ELISA Assay (Roche) was performed to determine apoptotic cell death at 24 h after reperfusion. Levels of pro-apoptotic (Caspase-3, Bcl-2-associated X-BAX, and Apoptosis-Inducing Factor-AIF) and anti-apoptotic proteins (Bcl-2 and Bcl-xL) were determined by Western blot analysis at 3 and 24 h after reperfusion. Results: As expected, untreated ischemic rats had the highest apoptotic cell death. Combined NBO/ethanol therapy decreased cell death by 48%, as compared to 29% with ethanol and 22% with NBO. Similarly, combined NBO/ethanol therapy promoted the greatest expression of anti-apoptotic factors and the lowest expression of pro-apoptotic proteins at 3 h after reperfusion. This effect was maintained at 24 h and even more pronounced for AIF and Caspase-3. Conclusions: Given singularly, NBO and ethanol improved the degree of cell death, decreased the expression of pro-apoptotic proteins, and increased the expression of anti-apoptotic proteins. Yet, when administered together, their effects largely compounded. These results suggest a synergistic neuroprotection offered by NBO with ethanol, which may be attributed at least in part to their shared role in modulating neuronal apoptosis.


2004 ◽  
Vol 32 (03) ◽  
pp. 377-387 ◽  
Author(s):  
Hyung-Jin Kim ◽  
Seon Il Jang ◽  
Young-Jun Kim ◽  
Hyun-Ock Pae ◽  
Hae-Young Won ◽  
...  

We studied the effect of 4-acetyl-12,13-epoxyl-9-trichothecene-3,15-diol (AETD) isolated from Isaria japonica, one of the most popular Chinese fungal medicines, on the induction of apoptosis in rat bladder carcinoma NBT-II cells. AETD was cytotoxic to NBT-II cells, and this cytotoxic effect appears to be attributed to its induction of apoptotic cell death, as AETD induced nuclear morphological changes and internucleosomal DNA fragmentation, and increased the proportion of hypodiploid cells and activity of caspase-3. AETD treatment also decreased the expression of the anti-apoptotic protein Bcl-2 and increased the expression of the pro-apoptotic protein Bax. These results provide important information in understanding the mechanism(s) of AETD-induced apoptosis.


2004 ◽  
Vol 17 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Anna Csiszar ◽  
Zoltan Ungvari ◽  
Akos Koller ◽  
John G. Edwards ◽  
Gabor Kaley

Previously we demonstrated that aging in coronary arteries is associated with proinflammatory phenotypic changes and decreased NO bioavailability, which, we hypothesized, promotes vascular disease by enhancing endothelial apoptosis. To test this hypothesis we characterized proapoptotic alterations in the phenotype of coronary arteries of aged (26 mo old) and young (3 mo old) F344 rats. DNA fragmentation analysis and TUNEL assay showed that in aged vessels there was an approximately fivefold increase in the number of apoptotic endothelial cells. In aged coronary arteries there was an increased expression of TNFα, TNFβ, and caspase 9 (microarray, real-time PCR), as well as increased caspase 9 and caspase 3 activity, whereas expression of TNFR1, TNFα-converting enzyme (TACE), Bcl-2, Bcl-X(L), Bid, Bax, caspase 8, and caspase 3 were unchanged. In vessel culture (18 h) incubation of aged coronary arteries with a TNF blocking antibody or the NO donor S-nitroso-penicillamine (SNAP) decreased apoptotic cell death. Incubation of young arteries with exogenous TNFα increased caspase 9 activity and elicited endothelial apoptosis, which was attenuated by SNAP. Inhibition of NO synthesis in cultured young coronary arteries also induced apoptotic cell death and potentiated the apoptotic effect of TNFα. Thus we propose that age-related upregulation of TNFα and caspase 9 and decreased bioavailability of NO promote endothelial apoptosis in coronary arteries that may lead to impaired endothelial function and ischemic heart disease in the elderly.


2009 ◽  
Vol 37 (2) ◽  
pp. 209-218 ◽  
Author(s):  
Mathieu Vinken ◽  
Elke Decrock ◽  
Elke De Vuyst ◽  
Luc Leybaert ◽  
Tamara Vanhaecke ◽  
...  

This study was set up to critically evaluate a commonly-used in vitro model of hepatocellular apoptotic cell death, in which freshly isolated hepatocytes, cultured in a monolayer configuration, are exposed to a combination of Fas ligand and cycloheximide for six hours. A set of well-acknowledged cell death markers was addressed: a) cell morphology was studied by light microscopy; b) apoptotic and necrotic cell populations were quantified by in situ staining with Annexin-V, Hoechst 33342 and propidium iodide (PI); c) apoptotic and necrotic activities were monitored by probing caspase 3-like activity and measuring the extracellular leakage of lactate dehydrogenase (LDH), respectively; and d) the expression of apoptosis regulators was investigated by immunoblotting. The initiation of apoptosis was evidenced by the activation of caspase 8 and caspase 9, and increased Annexin-V reactivity. Progression through the apoptotic process was confirmed by the activation of caspase 3 and Bid, the enhanced expression of Bax, and the occurrence of nuclear fragmentation. Late transition to a necrotic appearance was demonstrated by an increased number of PI-positive cells and augmented extracellular release of LDH. Thus, the in vitro model allows the study of the entire course of Fas-mediated hepatocellular apoptotic cell death, which is not possible in vivo. This experimental system can serve a broad range of in vitro pharmaco-toxicological purposes, thereby directly assisting in the reduction of animal experimentation.


Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 207 ◽  
Author(s):  
Yi-Yue Wang ◽  
Jun Hyeok Kwak ◽  
Kyung-Tae Lee ◽  
Tsegaye Deyou ◽  
Young Pyo Jang ◽  
...  

The seeds of Millettia ferruginea are used in fishing, pesticides, and folk medicine in Ethiopia. Here, the anti-cancer effects of isoflavones isolated from M. ferruginea were evaluated in human ovarian cancer cells. We found that isoflavone ferrugone and 6,7-dimethoxy-3’,4’-methylenedioxy-8-(3,3-dimethylallyl)isoflavone (DMI) had potent cytotoxic effects on human ovarian cancer cell A2780 and SKOV3. Ferrugone and DMI treatment increased the sub-G1 cell population in a dose-dependent manner in A2780 cells. The cytotoxic activity of ferrugone and DMI was associated with the induction of apoptosis, as shown by an increase in annexin V-positive cells. Z-VAD-fmk, a broad-spectrum caspase inhibitor, and z-DEVD-fmk, a caspase-3 inhibitor, significantly reversed both the ferrugone and DMI-induced apoptosis, suggesting that cell death stimulated by the isoflavones is mediated by caspase-3-dependent apoptosis. Additionally, ferrugone-induced apoptosis was found to be caspase-8-dependent, while DMI-induced apoptosis was caspase-9-dependent. Notably, DMI, but not ferrugone, increased the intracellular levels of reactive oxygen species (ROS), and antioxidant N-acetyl-L-cysteine (NAC) attenuated the pro-apoptotic activity of DMI. These data suggest that DMI induced apoptotic cell death through the intrinsic pathway via ROS production, while ferrugone stimulated the extrinsic pathway in human ovarian cancer cells.


Sign in / Sign up

Export Citation Format

Share Document