scholarly journals A pVII positioning code determines the dynamics of Adenoviral nucleoprotein structure and primes it for early gene activation

2020 ◽  
Author(s):  
Uwe Schwartz ◽  
Tetsuro Komatsu ◽  
Claudia Huber ◽  
Floriane Lagadec ◽  
Elisabeth Silberhorn ◽  
...  

SUMMARYInside the capsid adenovirus DNA is associated with the structural protein pVII. However, the viral DNA organisation, pVII positioning and the dynamic changes of viral packaging upon infection, to form a transcriptional active genome, are not known. We combined MNase-Seq and single genome imaging during early infection to provide the structure and time resolved dynamics of viral chromatin changes, correlated with gene transcription. pVII complexes form nucleosome-like arrays, being precisely positioned on DNA, creating a defined and unique adenoviral nucleoprotein-architecture. The structure renders the viral genome transcription competent with lower pVII densities at early gene loci, correlating with viral chromatin de-condensation upon infection. Nucleosomes specifically replace pVII at transcription start sites of early genes, preceding transcriptional activation. Our study suggests an underlying regulatory pVII nucleoprotein-architecture, required for the dynamic changes during early infection, including transcription related nucleosome assembly. We suggest that our study provides a basis for the development of recombinant adenoviral vectors exhibiting sustained expression in gene therapy.

2018 ◽  
Vol 14 (3) ◽  
pp. 253-265 ◽  
Author(s):  
Cait M. Williamson ◽  
Inbal S. Klein ◽  
Won Lee ◽  
James P. Curley

2004 ◽  
Vol 557 (3) ◽  
pp. 773-783 ◽  
Author(s):  
Guoxiang Yuan ◽  
Gautam Adhikary ◽  
Andrew A. McCormick ◽  
John. J. Holcroft ◽  
Ganesh K. Kumar ◽  
...  

1988 ◽  
Vol 8 (3) ◽  
pp. 1301-1308 ◽  
Author(s):  
T Enver ◽  
A C Brewer ◽  
R K Patient

Transcriptional activation of the Xenopus laevis beta-globin gene requires the synergistic action of the simian virus 40 enhancer and DNA replication in DEAE-dextran-mediated HeLa cell transfections. Replication does not act through covalent modification of the template, since its requirement was not obviated by the prior replication of the transfected DNA in eucaryotic cells. Transfection of DNA over a 100-fold range demonstrates that replication does not contribute to gene activation simply increasing template copy number. Furthermore, in cotransfections of replicating and nonreplicating constructs, only replicating templates were transcribed. Replication is not simply a requirement of chromatin assembly, since even unreplicated templates generated nucleosomal ladders. Stimulation of beta-globin transcription by DNA replication, though less marked, was also observed in calcium phosphate transfections. We interpret these results as revealing a dynamic role for replication in gene activation.


1994 ◽  
Vol 14 (5) ◽  
pp. 3484-3493
Author(s):  
T J Wu ◽  
G Monokian ◽  
D F Mark ◽  
C R Wobbe

VP16 is a herpes simplex virus (HSV)-encoded transcriptional activator protein that is essential for efficient viral replication and as such may be a target for novel therapeutic agents directed against viral gene expression. We have reconstituted transcriptional activation by VP16 in an in vitro system that is dependent on DNA sequences from HSV immediate-early gene promoters and on protein-protein interactions between VP16 and Oct-1 that are required for VP16 activation in vivo. Activation increased synergistically with the number of TAATGARAT elements (the cis-acting element for VP16 activation in vivo) upstream of the core promoter, and mutations of this element that reduce Oct-1 or VP16 DNA binding reduced transactivation in vitro. A VP16 insertion mutant unable to interact with Oct-1 was inactive, but, surprisingly, a deletion mutant lacking the activation domain was approximately 65% as active as the full-length protein. The activation domains of Oct-1 were necessary for activation in reactions containing the VP16 deletion mutant, and they contributed significantly to activation by full-length VP16. Addition of a GA-rich element present in many HSV immediate-early gene enhancers synergistically stimulated VP16-activated transcription. Finally, oligopeptides that are derived from a region of VP16 thought to contact a cellular factor known as HCF (host cell factor) and that inhibit efficient VP16 binding to the TAATGARAT element also specifically inhibited VP16-activated, but not basal, transcription. Amino acid substitutions in one of these peptides identified three residues that are absolutely required for inhibition and presumably for interaction of VP16 with HCF.


1990 ◽  
Vol 10 (8) ◽  
pp. 4243-4255 ◽  
Author(s):  
D Gius ◽  
X M Cao ◽  
F J Rauscher ◽  
D R Cohen ◽  
T Curran ◽  
...  

The Fos-Jun complex has been shown to activate transcription through the regulatory element known as the AP-1 binding site. We show that Fos down regulates several immediate-early genes (c-fos, Egr-1, and Egr-2) after mitogenic stimulation. Specifically, we demonstrate that the target for this repression is a sequence of the form CC(A/T)6GG, also known as a CArG box. Whereas Fos bound to the AP-1 site through a domain rich in basic amino acids and associated with Jun via a leucine zipper interaction, mutant Fos proteins lacking these structures were still capable of causing repression. Furthermore, Jun neither enhanced nor inhibited down regulation by Fos. Critical residues required for repression are located within the C-terminal 27 amino acids of c-Fos, since v-Fos and C-terminal truncations of c-Fos did not down regulate. In addition, transfer of 180 c-Fos C-terminal amino acids to Jun conferred upon it the ability to repress. Finally, Fra-1, a Fos-related protein which has striking similarity to Fos in its C-terminal 40 amino acids, also down regulated Egr-1 expression. Thus, Fos is a transcriptional regulator that can activate or repress gene expression by way of two separate functional domains that act on distinct regulatory elements.


2020 ◽  
Vol 117 (48) ◽  
pp. 30805-30815
Author(s):  
Mingzhe Shen ◽  
Chae Jin Lim ◽  
Junghoon Park ◽  
Jeong Eun Kim ◽  
Dongwon Baek ◽  
...  

Transcriptional regulation is a complex and pivotal process in living cells. HOS15 is a transcriptional corepressor. Although transcriptional repressors generally have been associated with inactive genes, increasing evidence indicates that, through poorly understood mechanisms, transcriptional corepressors also associate with actively transcribed genes. Here, we show that HOS15 is the substrate receptor for an SCF/CUL1 E3 ubiquitin ligase complex (SCFHOS15) that negatively regulates plant immunity by destabilizing transcriptional activation complexes containing NPR1 and associated transcriptional activators. In unchallenged conditions, HOS15 continuously eliminates NPR1 to prevent inappropriate defense gene expression. Upon defense activation, HOS15 preferentially associates with phosphorylated NPR1 to stimulate rapid degradation of transcriptionally active NPR1 and thus limit the extent of defense gene expression. Our findings indicate that HOS15-mediated ubiquitination and elimination of NPR1 produce effects contrary to those of CUL3-containing ubiquitin ligase that coactivate defense gene expression. Thus, HOS15 plays a key role in the dynamic regulation of pre- and postactivation host defense.


2021 ◽  
Vol 118 (6) ◽  
pp. e1922864118 ◽  
Author(s):  
Yu-Ling Lee ◽  
Keiichi Ito ◽  
Wen-Chieh Pi ◽  
I-Hsuan Lin ◽  
Chi-Shuen Chu ◽  
...  

The chimeric transcription factor E2A-PBX1, containing the N-terminal activation domains of E2A fused to the C-terminal DNA-binding domain of PBX1, results in 5% of pediatric acute lymphoblastic leukemias (ALL). We recently have reported a mechanism for RUNX1-dependent recruitment of E2A-PBX1 to chromatin in pre-B leukemic cells; but the subsequent E2A-PBX1 functions through various coactivators and the general transcriptional machinery remain unclear. The Mediator complex plays a critical role in cell-specific gene activation by serving as a key coactivator for gene-specific transcription factors that facilitates their function through the RNA polymerase II transcriptional machinery, but whether Mediator contributes to aberrant expression of E2A-PBX1 target genes remains largely unexplored. Here we show that Mediator interacts directly with E2A-PBX1 through an interaction of the MED1 subunit with an E2A activation domain. Results of MED1 depletion by CRISPR/Cas9 further indicate that MED1 is specifically required for E2A-PBX1–dependent gene activation and leukemic cell growth. Integrated transcriptome and cistrome analyses identify pre-B cell receptor and cell cycle regulatory genes as direct cotargets of MED1 and E2A-PBX1. Notably, complementary biochemical analyses also demonstrate that recruitment of E2A-PBX1 to a target DNA template involves a direct interaction with DNA-bound RUNX1 that can be further stabilized by EBF1. These findings suggest that E2A-PBX1 interactions with RUNX1 and MED1/Mediator are of functional importance for both gene-specific transcriptional activation and maintenance of E2A-PBX1–driven leukemia. The MED1 dependency for E2A-PBX1–mediated gene activation and leukemogenesis may provide a potential therapeutic opportunity by targeting MED1 in E2A-PBX1+ pre-B leukemia.


2000 ◽  
Vol 20 (23) ◽  
pp. 8879-8888 ◽  
Author(s):  
Zuqin Nie ◽  
Yutong Xue ◽  
Dafeng Yang ◽  
Sharleen Zhou ◽  
Bonnie J. Deroo ◽  
...  

ABSTRACT The SWI/SNF family of chromatin-remodeling complexes facilitates gene activation by assisting transcription machinery to gain access to targets in chromatin. This family includes BAF (also called hSWI/SNF-A) and PBAF (hSWI/SNF-B) from humans and SWI/SNF and Rsc fromSaccharomyces cerevisiae. However, the relationship between the human and yeast complexes is unclear because all human subunits published to date are similar to those of both yeast SWI/SNF and Rsc. Also, the two human complexes have many identical subunits, making it difficult to distinguish their structures or functions. Here we describe the cloning and characterization of BAF250, a subunit present in human BAF but not PBAF. BAF250 contains structural motifs conserved in yeast SWI1 but not in any Rsc components, suggesting that BAF is related to SWI/SNF. BAF250 is also a homolog of the Drosophila melanogaster Osa protein, which has been shown to interact with a SWI/SNF-like complex in flies. BAF250 possesses at least two conserved domains that could be important for its function. First, it has an AT-rich DNA interaction-type DNA-binding domain, which can specifically bind a DNA sequence known to be recognized by a SWI/SNF family-related complex at the β-globin locus. Second, BAF250 stimulates glucocorticoid receptor-dependent transcriptional activation, and the stimulation is sharply reduced when the C-terminal region of BAF250 is deleted. This region of BAF250 is capable of interacting directly with the glucocorticoid receptor in vitro. Our data suggest that BAF250 confers specificity to the human BAF complex and may recruit the complex to its targets through either protein-DNA or protein-protein interactions.


2006 ◽  
Vol 188 (17) ◽  
pp. 6101-6114 ◽  
Author(s):  
Louis-Charles Fortier ◽  
Ali Bransi ◽  
Sylvain Moineau

ABSTRACT The lytic lactococcal phage Q54 was previously isolated from a failed sour cream production. Its complete genomic sequence (26,537 bp) is reported here, and the analysis indicated that it represents a new Lactococcus lactis phage species. A striking feature of phage Q54 is the low level of similarity of its proteome (47 open reading frames) with proteins in databases. A global gene expression study confirmed the presence of two early gene modules in Q54. The unusual configuration of these modules, combined with results of comparative analysis with other lactococcal phage genomes, suggests that one of these modules was acquired through recombination events between c2- and 936-like phages. Proteolytic cleavage and cross-linking of the major capsid protein were demonstrated through structural protein analyses. A programmed translational frameshift between the major tail protein (MTP) and the receptor-binding protein (RBP) was also discovered. A “shifty stop” signal followed by putative secondary structures is likely involved in frameshifting. To our knowledge, this is only the second report of translational frameshifting (+1) in double-stranded DNA bacteriophages and the first case of translational coupling between an MTP and an RBP. Thus, phage Q54 represents a fascinating member of a new species with unusual characteristics that brings new insights into lactococcal phage evolution.


Sign in / Sign up

Export Citation Format

Share Document