scholarly journals Non-additive polygenic models improve predictions of fitness traits in three eukaryote model species

2020 ◽  
Author(s):  
Moises Exposito-Alonso ◽  
Peter Wilton ◽  
Rasmus Nielsen

ABSTRACTTo describe a living organism it is often said that “the whole is greater than the sum of its parts”. In genetics, we may also think that the effect of multiple mutations on an organism is greater than their additive individual effect, a phenomenon called epistasis or multiplicity. Despite the last decade’s discovery that many disease- and fitness-related traits are polygenic, or controlled by many genetic variants, it is still debated whether the effects of individual genes combine additively or not. Here we develop a flexible likelihood framework for genome-wide associations to fit complex traits such as fitness under both additive and non-additive polygenic architectures. Analyses of simulated datasets under different true additive, multiplicative, or other epistatic models, confirm that our method can identify global non-additive selection. Applying the model to experimental datasets of wild type lines of Arabidopsis thaliana, Drosophila melanogaster, and Saccharomyces cerevisiae, we find that fitness is often best explained with non-additive polygenic models. Instead, a multiplicative polygenic model appears to better explain fitness in some experimental environments. The statistical models presented here have the potential to improve prediction of phenotypes, such as disease susceptibility, over the standard methods for calculating polygenic scores which assume additivity.

2021 ◽  
Vol 19 (4) ◽  
pp. e36
Author(s):  
Wonil Chung

Predicting individual traits and diseases from genetic variants is critical to fulfilling the promise of personalized medicine. The genetic variants from genome-wide association studies (GWAS), including variants well below GWAS significance, can be aggregated into highly significant predictions across a wide range of complex traits and diseases. The recent arrival of large-sample public biobanks enables highly accurate polygenic predictions based on genetic variants across the whole genome. Various statistical methodologies and diverse computational tools have been introduced and developed to computed the polygenic risk score (PRS) more accurately. However, many researchers utilize PRS tools without a thorough understanding of the underlying model and how to specify the parameters for the best performance. It is advantageous to study the statistical models implemented in computational tools for PRS estimation and the formulas of parameters to be specified. Here, we review a variety of recent statistical methodologies and computational tools for PRS computation.


2019 ◽  
Author(s):  
Gabriel Cuellar Partida ◽  
Joyce Y Tung ◽  
Nicholas Eriksson ◽  
Eva Albrecht ◽  
Fazil Aliev ◽  
...  

AbstractHandedness, a consistent asymmetry in skill or use of the hands, has been studied extensively because of its relationship with language and the over-representation of left-handers in some neurodevelopmental disorders. Using data from the UK Biobank, 23andMe and 32 studies from the International Handedness Consortium, we conducted the world’s largest genome-wide association study of handedness (1,534,836 right-handed, 194,198 (11.0%) left-handed and 37,637 (2.1%) ambidextrous individuals). We found 41 genetic loci associated with left-handedness and seven associated with ambidexterity at genome-wide levels of significance (P < 5×10−8). Tissue enrichment analysis implicated the central nervous system and brain tissues including the hippocampus and cerebrum in the etiology of left-handedness. Pathways including regulation of microtubules, neurogenesis, axonogenesis and hippocampus morphology were also highlighted. We found suggestive positive genetic correlations between being left-handed and some neuropsychiatric traits including schizophrenia and bipolar disorder. SNP heritability analyses indicated that additive genetic effects of genotyped variants explained 5.9% (95% CI = 5.8% – 6.0%) of the underlying liability of being left-handed, while the narrow sense heritability was estimated at 12% (95% CI = 7.2% – 17.7%). Further, we show that genetic correlation between left-handedness and ambidexterity is low (rg = 0.26; 95% CI = 0.08 – 0.43) implying that these traits are largely influenced by different genetic mechanisms. In conclusion, our findings suggest that handedness, like many other complex traits is highly polygenic, and that the genetic variants that predispose to left-handedness may underlie part of the association with some psychiatric disorders that has been observed in multiple observational studies.


2019 ◽  
Author(s):  
Tom G Richardson ◽  
Gibran Hemani ◽  
Tom R Gaunt ◽  
Caroline L Relton ◽  
George Davey Smith

AbstractBackgroundDeveloping insight into tissue-specific transcriptional mechanisms can help improve our understanding of how genetic variants exert their effects on complex traits and disease. By applying the principles of Mendelian randomization, we have undertaken a systematic analysis to evaluate transcriptome-wide associations between gene expression across 48 different tissue types and 395 complex traits.ResultsOverall, we identified 100,025 gene-trait associations based on conventional genome-wide corrections (P < 5 × 10−08) that also provided evidence of genetic colocalization. These results indicated that genetic variants which influence gene expression levels in multiple tissues are more likely to influence multiple complex traits. We identified many examples of tissue-specific effects, such as genetically-predicted TPO, NR3C2 and SPATA13 expression only associating with thyroid disease in thyroid tissue. Additionally, FBN2 expression was associated with both cardiovascular and lung function traits, but only when analysed in heart and lung tissue respectively.We also demonstrate that conducting phenome-wide evaluations of our results can help flag adverse on-target side effects for therapeutic intervention, as well as propose drug repositioning opportunities. Moreover, we find that exploring the tissue-dependency of associations identified by genome-wide association studies (GWAS) can help elucidate the causal genes and tissues responsible for effects, as well as uncover putative novel associations.ConclusionsThe atlas of tissue-dependent associations we have constructed should prove extremely valuable to future studies investigating the genetic determinants of complex disease. The follow-up analyses we have performed in this study are merely a guide for future research. Conducting similar evaluations can be undertaken systematically at http://mrcieu.mrsoftware.org/Tissue_MR_atlas/.


2019 ◽  
Vol 20 (10) ◽  
pp. 765-780 ◽  
Author(s):  
Diana Cruz ◽  
Ricardo Pinto ◽  
Margarida Freitas-Silva ◽  
José Pedro Nunes ◽  
Rui Medeiros

Atrial fibrillation (AF) and stroke are included in a group of complex traits that have been approached regarding of their study by susceptibility genetic determinants. Since 2007, several genome-wide association studies (GWAS) aiming to identify genetic variants modulating AF risk have been conducted. Thus, 11 GWAS have identified 26 SNPs (p < 5 × 10-2), of which 19 reached genome-wide significance (p < 5 × 10-8). From those variants, seven were also associated with cardioembolic stroke and three reached genome-wide significance in stroke GWAS. These associations may shed a light on putative shared etiologic mechanisms between AF and cardioembolic stroke. Additionally, some of these identified variants have been incorporated in genetic risk scores in order to elucidate new approaches of stroke prediction, prevention and treatment.


2020 ◽  
Author(s):  
Min Zhao ◽  
Hong Qu

Abstract Background: Circular RNAs (circRNAs) play important roles in regulating gene expression through binding miRNAs and RNA binding proteins. Genetic variation of circRNAs may affect complex traits/diseases by changing their binding efficiency to target miRNAs and proteins. There is a growing demand for investigations of the functions of genetic changes using large-scale experimental evidence. However, there is no online genetic resource for circRNA genes. Results: We performed extensive genetic annotation of 295,526 circRNAs integrated from circBase, circNet and circRNAdb. All pre-computed genetic variants were presented at our online resource, circVAR, with data browsing and search functionality. We explored the chromosome-based distribution of circRNAs and their associated variants. We found that, based on mapping to the 1000 Genomes and ClinVAR databases, chromosome 17 has a relatively large number of circRNAs and associated common and health-related genetic variants. Following the annotation of genome wide association studies (GWAS)-based circRNA variants, we found many non-coding variants within circRNAs, suggesting novel mechanisms for common diseases reported from GWAS studies. For cancer-based somatic variants, we found that chromosome 7 has many highly complex mutations that have been overlooked in previous research. Conclusion: We used the circVAR database to collect SNPs and small insertions and deletions (INDELs) in putative circRNA regions and to identify their potential phenotypic information. To provide a reusable resource for the circRNA research community, we have published all the pre-computed genetic data concerning circRNAs and associated genes together with data query and browsing functions at http://soft.bioinfo-minzhao.org/circvar .


2018 ◽  
Author(s):  
Paul RHJ Timmers ◽  
Ninon Mounier ◽  
Kristi Läll ◽  
Krista Fischer ◽  
Zheng Ning ◽  
...  

AbstractWe use a multi-stage genome-wide association of 1 million parental lifespans of genotyped subjects and data on mortality risk factors to validate previously unreplicated findings near CDKN2B-AS1, ATXN2/BRAP, FURIN/FES, ZW10, PSORS1C3, and 13q21.31, and identify and replicate novel findings near GADD45G, KCNK3, LDLR, POM121C, ZC3HC1, and ABO. We also validate previous findings near 5q33.3/EBF1 and FOXO3, whilst finding contradictory evidence at other loci. Gene set and tissue-specific analyses show that expression in foetal brain cells and adult dorsolateral prefrontal cortex is enriched for lifespan variation, as are gene pathways involving lipid proteins and homeostasis, vesicle-mediated transport, and synaptic function. Individual genetic variants that increase dementia, cardiovascular disease, and lung cancer –but not other cancers-explain the most variance, possibly reflecting modern susceptibilities, whilst cancer may act through many rare variants, or the environment. Resultant polygenic scores predict a mean lifespan difference of around five years of life across the deciles.


2020 ◽  
Author(s):  
Meng Luo ◽  
Shiliang Gu

AbstractAlthough genome-wide association studies have successfully identified thousands of markers associated with various complex traits and diseases, our ability to predict such phenotypes remains limited. A perhaps ignored explanation lies in the limitations of the genetic models and statistical techniques commonly used in association studies. However, using genotype data for individuals to perform accurate genetic prediction of complex traits can promote genomic selection in animal and plant breeding and can lead to the development of personalized medicine in humans. Because most complex traits have a polygenic architecture, accurate genetic prediction often requires modeling genetic variants together via polygenic methods. Here, we also utilize our proposed polygenic methods, which refer to as the iterative screen regression model (ISR) for genome prediction. We compared ISR with several commonly used prediction methods with simulations. We further applied ISR to predicting 15 traits, including the five species of cattle, rice, wheat, maize, and mice. The results of the study indicate that the ISR method performs well than several commonly used polygenic methods and stability.


2014 ◽  
Vol 11 (94) ◽  
pp. 20130908 ◽  
Author(s):  
Beatriz Valcárcel ◽  
Timothy M. D. Ebbels ◽  
Antti J. Kangas ◽  
Pasi Soininen ◽  
Paul Elliot ◽  
...  

Current studies of phenotype diversity by genome-wide association studies (GWAS) are mainly focused on identifying genetic variants that influence level changes of individual traits without considering additional alterations at the system-level. However, in addition to level alterations of single phenotypes, differences in association between phenotype levels are observed across different physiological states. Such differences in molecular correlations between states can potentially reveal information about the system state beyond that reported by changes in mean levels alone. In this study, we describe a novel methodological approach, which we refer to as genome metabolome integrated network analysis (GEMINi) consisting of a combination of correlation network analysis and genome-wide correlation study. The proposed methodology exploits differences in molecular associations to uncover genetic variants involved in phenotype variation. We test the performance of the GEMINi approach in a simulation study and illustrate its use in the context of obesity and detailed quantitative metabolomics data on systemic metabolism. Application of GEMINi revealed a set of metabolic associations which differ between normal and obese individuals. While no significant associations were found between genetic variants and body mass index using a standard GWAS approach, further investigation of the identified differences in metabolic association revealed a number of loci, several of which have been previously implicated with obesity-related processes. This study highlights the advantage of using molecular associations as an alternative phenotype when studying the genetic basis of complex traits and diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Declan Bennett ◽  
Donal O’Shea ◽  
John Ferguson ◽  
Derek Morris ◽  
Cathal Seoighe

AbstractOngoing increases in the size of human genotype and phenotype collections offer the promise of improved understanding of the genetics of complex diseases. In addition to the biological insights that can be gained from the nature of the variants that contribute to the genetic component of complex trait variability, these data bring forward the prospect of predicting complex traits and the risk of complex genetic diseases from genotype data. Here we show that advances in phenotype prediction can be applied to improve the power of genome-wide association studies. We demonstrate a simple and efficient method to model genetic background effects using polygenic scores derived from SNPs that are not on the same chromosome as the target SNP. Using simulated and real data we found that this can result in a substantial increase in the number of variants passing genome-wide significance thresholds. This increase in power to detect trait-associated variants also translates into an increase in the accuracy with which the resulting polygenic score predicts the phenotype from genotype data. Our results suggest that advances in methods for phenotype prediction can be exploited to improve the control of background genetic effects, leading to more accurate GWAS results and further improvements in phenotype prediction.


Sign in / Sign up

Export Citation Format

Share Document