scholarly journals Optimized gene expression from bacterial chromosome by high-throughput integration and screening

Author(s):  
Tatyana E Saleski ◽  
Meng Ting Chung ◽  
David N Carruthers ◽  
Azzaya Khasbaatar ◽  
Katsuo Kurabayashi ◽  
...  

Chromosomal integration of recombinant genes is desirable compared to expression from plasmids due to increased stability, reduced cell-to-cell variability, and the elimination of antibiotics for plasmid maintenance. Here, we present a new approach for tuning pathway gene expression levels via random integrations and high-throughput screening. We demonstrate multiplexed gene integration and expression-level optimization for isobutanol production in Escherichia coli. The integrated strains could, with significantly lower expression levels than plasmid-based expression, produce high titers (10.0 +/- 0.9 g/L isobutanol in 48 h) and yields (69 % of the theoretical maximum). Close examination of pathway expression in the top-performing, as well as other isolates, reveals the complexity of cellular metabolism and regulation, underscoring the need for precise optimization while integrating pathway genes into the chromosome. We expect this new method for multiplexed pathway gene integration and expression optimization can be readily extended to a wide range of pathways and chassis to create robust and efficient production strains.

2021 ◽  
Vol 7 (7) ◽  
pp. eabe1767
Author(s):  
Tatyana E. Saleski ◽  
Meng Ting Chung ◽  
David N. Carruthers ◽  
Azzaya Khasbaatar ◽  
Katsuo Kurabayashi ◽  
...  

Chromosomal integration of recombinant genes is desirable compared with expression from plasmids due to increased stability, reduced cell-to-cell variability, and elimination of the need for antibiotics for plasmid maintenance. Here, we present a new approach for tuning pathway gene expression levels via random integration and high-throughput screening. We demonstrate multiplexed gene integration and expression-level optimization for isobutanol production in Escherichia coli. The integrated strains could, with far lower expression levels than plasmid-based expression, produce high titers (10.0 ± 0.9 g/liter isobutanol in 48 hours) and yields (69% of the theoretical maximum). Close examination of pathway expression in the top-performing, as well as other isolates, reveals the complexity of cellular metabolism and regulation, underscoring the need for precise optimization while integrating pathway genes into the chromosome. We expect this method for pathway integration and optimization can be readily extended to a wide range of pathways and chassis to create robust and efficient production strains.


2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Thomas C. Williams ◽  
Xin Xu ◽  
Martin Ostrowski ◽  
Isak S. Pretorius ◽  
Ian T. Paulsen

Biosensors are valuable and versatile tools in synthetic biology that are used to modulate gene expression in response to a wide range of stimuli. Ligand responsive transcription factors are a class of biosensor that can be used to couple intracellular metabolite concentration with gene expression to enable dynamic regulation and high-throughput metabolite producer screening. We have established the Saccharomyces cerevisiae WAR1 transcriptional regulator and PDR12 promoter as an organic acid biosensor that can be used to detect varying levels of para-hydroxybenzoic acid (PHBA) production from the shikimate pathway and output green fluorescent protein (GFP) expression in response. The dynamic range of GFP expression in response to PHBA was dramatically increased by engineering positive-feedback expression of the WAR1 transcriptional regulator from its target PDR12 promoter. In addition, the noise in GFP expression at the population-level was controlled by normalising GFP fluorescence to constitutively expressed mCherry fluorescence within each cell. These biosensor modifications increased the high-throughput screening efficiency of yeast cells engineered to produce PHBA by 5,000-fold, enabling accurate fluorescence activated cell sorting isolation of producer cells that were mixed at a ratio of 1 in 10,000 with non-producers. Positive-feedback, ratiometric transcriptional regulator expression is likely applicable to many other transcription-factor/promoter pairs used in synthetic biology and metabolic engineering for both dynamic regulation and high-throughput screening applications.


2021 ◽  
Vol 11 (13) ◽  
pp. 5859
Author(s):  
Fernando N. Santos-Navarro ◽  
Yadira Boada ◽  
Alejandro Vignoni ◽  
Jesús Picó

Optimal gene expression is central for the development of both bacterial expression systems for heterologous protein production, and microbial cell factories for industrial metabolite production. Our goal is to fulfill industry-level overproduction demands optimally, as measured by the following key performance metrics: titer, productivity rate, and yield (TRY). Here we use a multiscale model incorporating the dynamics of (i) the cell population in the bioreactor, (ii) the substrate uptake and (iii) the interaction between the cell host and expression of the protein of interest. Our model predicts cell growth rate and cell mass distribution between enzymes of interest and host enzymes as a function of substrate uptake and the following main lab-accessible gene expression-related characteristics: promoter strength, gene copy number and ribosome binding site strength. We evaluated the differential roles of gene transcription and translation in shaping TRY trade-offs for a wide range of expression levels and the sensitivity of the TRY space to variations in substrate availability. Our results show that, at low expression levels, gene transcription mainly defined TRY, and gene translation had a limited effect; whereas, at high expression levels, TRY depended on the product of both, in agreement with experiments in the literature.


2021 ◽  
Vol 22 (6) ◽  
pp. 3022
Author(s):  
Tatjana Ullmann ◽  
Sonja Luckhardt ◽  
Markus Wolf ◽  
Michael J. Parnham ◽  
Eduard Resch

This study aimed to identify alternative anti-inflammatory compounds that modulate the activity of a relevant transcription factor, CCAAT/enhancer binding protein delta (C/EBPδ). C/EBPδ is a master regulator of inflammatory responses in macrophages (Mϕ) and is mainly regulated at the level of CEBPD gene transcription initiation. To screen for CEBPD-modulating compounds, we generated a THP-1-derived reporter cell line stably expressing secreted alkaline phosphatase (SEAP) under control of the defined CEBPD promoter (CEBPD::SEAP). A high-throughput screening of LOPAC®1280 and ENZO®774 libraries on LPS- and IFN-γ-activated THP-1 reporter Mϕ identified four epigenetically active hits: two bromodomain and extraterminal domain (BET) inhibitors, I-BET151 and Ro 11-1464, as well as two histone deacetylase (HDAC) inhibitors, SAHA and TSA. All four hits markedly and reproducibly upregulated SEAP secretion and CEBPD::SEAP mRNA expression, confirming screening assay reliability. Whereas BET inhibitors also upregulated the mRNA expression of the endogenous CEBPD, HDAC inhibitors completely abolished it. All hits displayed anti-inflammatory activity through the suppression of IL-6 and CCL2 gene expression. However, I-BET151 and HDAC inhibitors simultaneously upregulated the mRNA expression of pro-inflammatory IL-1ß. The modulation of CEBPD gene expression shown in this study contributes to our understanding of inflammatory responses in Mϕ and may offer an approach to therapy for inflammation-driven disorders.


2021 ◽  
Author(s):  
Diana Wu ◽  
Chelsea Gordon ◽  
John Shin ◽  
Michael Eisenstein ◽  
Hyongsok Tom Soh

Although antibodies are a powerful tool for molecular biology and clinical diagnostics, there are many emerging applications for which nucleic acid-based aptamers can be advantageous. However, generating high-quality aptamers with sufficient affinity and specificity for biomedical applications is a challenging feat for most research laboratories. In this Account, we describe four techniques developed in our lab to accelerate the discovery of high quality aptamer reagents that can achieve robust binding even for challenging molecular targets. The first method is particle display, in which we convert solution-phase aptamers into aptamer particles that can be screened via fluorescence-activated cell sorting (FACS) to quantitatively isolate individual aptamer particles based on their affinity. This enables the efficient isolation of high-affinity aptamers in fewer selection rounds than conventional methods, thereby minimizing selection biases and reducing the emergence of artifacts in the final aptamer pool. We subsequently developed the multi-parametric particle display (MPPD) method, which employs two-color FACS to isolate aptamer particles based on both affinity and specificity, yielding aptamers that exhibit excellent target binding even in complex matrices like serum. The third method is a click chemistry-based particle display (click-PD) that enables the generation and high-throughput screening of non-nattural aptamers with a wide range of base modifications. We have shown that these base-modified aptamers can achieve robust affinity and specificity for targets that have proven challenging or inaccessible with natural nucleotide-based aptamer libraries. Lastly, we describe the non-natural aptamer array (N2A2) platform, in which a modified benchtop sequencing instrument is used to characterize base-modified aptamers in a massively parallel fashion, enabling the efficient identification of molecules with excellent affinity and specificity for their targets. This system first generates aptamer clusters on the flow-cell surface that incorporate alkyne-modified nucleobases, and then performs a click reaction to couple those nucleobases to an azide-modified chemical moiety. This yields a sequence-defined array of tens of millions of base-modified sequences, which can then be characterized in a high-throughput fashion. Collectively, we believe that these advancements are helping to make aptamer technology more accessible, efficient, and robust, thereby enabling the use of these affinity reagents for a wider range of molecular recognition and detection-based applications.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Xing Zhao ◽  
Gaozhi Ou ◽  
Mengcheng Lei ◽  
Yang Zhang ◽  
Lina Li ◽  
...  

Cells in native microenvironment are subjected to varying combinations of biochemical cues and mechanical cues in a wide range. Despite many signaling pathways have been found to be responsive for...


2019 ◽  
Vol 47 (19) ◽  
pp. 10452-10463 ◽  
Author(s):  
Xiangyang Liu ◽  
Sanjan T P Gupta ◽  
Devesh Bhimsaria ◽  
Jennifer L Reed ◽  
José A Rodríguez-Martínez ◽  
...  

Abstract Ligand-responsive allosteric transcription factors (aTF) play a vital role in genetic circuits and high-throughput screening because they transduce biochemical signals into gene expression changes. Programmable control of gene expression from aTF-regulated promoter is important because different downstream effector genes function optimally at different expression levels. However, tuning gene expression of native promoters is difficult due to complex layers of homeostatic regulation encoded within them. We engineered synthetic promoters de novo by embedding operator sites with varying affinities and radically reshaped binding preferences within a minimal, constitutive Escherichia coli promoter. Multiplexed cell-based screening of promoters for three TetR-like aTFs generated with this approach gave rich diversity of gene expression levels, dynamic ranges and ligand sensitivities and were 50- to 100-fold more active over their respective native promoters. Machine learning on our dataset revealed that relative position of the core motif and bases flanking the core motif play an important role in modulating induction response. Our generalized approach yields customizable and programmable aTF-regulated promoters for engineering cellular pathways and enables the discovery of new small molecule biosensors.


2004 ◽  
Vol 36 (4) ◽  
pp. 427-427 ◽  
Author(s):  
K Stegmaier ◽  
K N Ross ◽  
S A Colavito ◽  
S O'Malley ◽  
B R Stockwell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document