scholarly journals High-Throughput Screening for CEBPD-Modulating Compounds in THP-1-Derived Reporter Macrophages Identifies Anti-Inflammatory HDAC and BET Inhibitors

2021 ◽  
Vol 22 (6) ◽  
pp. 3022
Author(s):  
Tatjana Ullmann ◽  
Sonja Luckhardt ◽  
Markus Wolf ◽  
Michael J. Parnham ◽  
Eduard Resch

This study aimed to identify alternative anti-inflammatory compounds that modulate the activity of a relevant transcription factor, CCAAT/enhancer binding protein delta (C/EBPδ). C/EBPδ is a master regulator of inflammatory responses in macrophages (Mϕ) and is mainly regulated at the level of CEBPD gene transcription initiation. To screen for CEBPD-modulating compounds, we generated a THP-1-derived reporter cell line stably expressing secreted alkaline phosphatase (SEAP) under control of the defined CEBPD promoter (CEBPD::SEAP). A high-throughput screening of LOPAC®1280 and ENZO®774 libraries on LPS- and IFN-γ-activated THP-1 reporter Mϕ identified four epigenetically active hits: two bromodomain and extraterminal domain (BET) inhibitors, I-BET151 and Ro 11-1464, as well as two histone deacetylase (HDAC) inhibitors, SAHA and TSA. All four hits markedly and reproducibly upregulated SEAP secretion and CEBPD::SEAP mRNA expression, confirming screening assay reliability. Whereas BET inhibitors also upregulated the mRNA expression of the endogenous CEBPD, HDAC inhibitors completely abolished it. All hits displayed anti-inflammatory activity through the suppression of IL-6 and CCL2 gene expression. However, I-BET151 and HDAC inhibitors simultaneously upregulated the mRNA expression of pro-inflammatory IL-1ß. The modulation of CEBPD gene expression shown in this study contributes to our understanding of inflammatory responses in Mϕ and may offer an approach to therapy for inflammation-driven disorders.

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Zhuo Deng ◽  
Jing Wang ◽  
Wentao Lyu ◽  
Xuwen Wieneke ◽  
Robert Matts ◽  
...  

Novel alternatives to antibiotics are needed for the swine industry, given increasing restrictions on subtherapeutic use of antibiotics. Augmenting the synthesis of endogenous host defense peptides (HDPs) has emerged as a promising antibiotic-alternative approach to disease control and prevention. To facilitate the identification of HDP inducers for swine use, we developed a stable luciferase reporter cell line, IPEC-J2/PBD3-luc, through permanent integration of a luciferase reporter gene driven by a 1.1 kb porcine β-defensin 3 (PBD3) gene promoter in porcine IPEC-J2 intestinal epithelial cells. Such a stable reporter cell line was employed in a high-throughput screening of 148 epigenetic compounds and 584 natural products, resulting in the identification of 41 unique hits with a minimum strictly standardized mean difference (SSMD) value of 3.0. Among them, 13 compounds were further confirmed to give at least a 5-fold increase in the luciferase activity in the stable reporter cell line, with 12 being histone deacetylase (HDAC) inhibitors. Eight compounds were subsequently observed to be comparable to sodium butyrate in inducing PBD3 mRNA expression in parental IPEC-J2 cells in the low micromolar range. Six HDAC inhibitors including suberoylanilide hydroxamine (SAHA), HC toxin, apicidin, panobinostat, SB939, and LAQ824 were additionally found to be highly effective HDP inducers in a porcine 3D4/31 macrophage cell line. Besides PBD3, other HDP genes such as PBD2 and cathelicidins (PG1–5) were concentration-dependently induced by those compounds in both IPEC-J2 and 3D4/31 cells. Furthermore, the antibacterial activities of 3D4/31 cells were augmented following 24 h exposure to HDAC inhibitors. In conclusion, a cell-based high-throughput screening assay was developed for the discovery of porcine HDP inducers, and newly identified HDP-inducing compounds may have potential to be developed as alternatives to antibiotics for applications in swine and possibly other animal species.


2021 ◽  
Author(s):  
◽  
Tatjana Ullmann

Development of treatment strategies of chronic inflammatory disorders relies on on-going progress in drug discovery approaches and related molecular biologics. This study presents a gene reporter-based approach of phenotypic screening for anti-inflammatory compounds in the context of rheumatoid arthritis (RA). CEBPD gene, used as the target gene for the screening readout, encodes CCAAT/enhancer binding protein delta (C/EBPδ) transcription factor (TF). Structural and regulatory characteristics of CEBPD gene as well as function of C/EBPδ TF in the context of inflammation satisfied assay requirements. C/EBPδ TF acts as a key regula-tor of inflammatory gene transcription in macrophages (Mϕ) and is observed to con-tribute to disease development in both a rodent model of RA and RA patient biopsies. Despite well-described pro-inflammatory effects of C/EBPδ TF, it functions as a cell context-specific signal integrator showing also an anti-inflammatory activity. Conse-quently, both activation and inhibition of CEBPD alike may display a desired anti-inflammatory effect. The aim of this study was to develop a high-throughput screening assay for CEBPD-modulating compounds and confirm hit compounds’ anti-inflammatory effects via gene expression analysis. Generation and characterization of a multi-gene-reporter cassette 1.0 encoding enzy-matic secreted alkaline phosphatase (SEAP) gene reporter was a priority during the assay development. Chemiluminescent SEAP assay demonstrating high assay sensitivi-ty, broad linear range, high reproducibility and repeatability was chosen to monitor activity of the defined CEBPD promoter (CEBPD::SEAP). PMA-differentiated and M1-polarized THP-1-derived Mϕ stably expressing multi-gene-reporter cassette 1.0 were used as the assay’s cellular system. mRNA expression of both reporter CEBPD::SEAP and endogenous CEBPD mirrored each other in response to a LPS and IFN-g-triggered inflammatory stimulus (M1 treatment), even though the defined CEBPD promoter re-gion, utilized in the assay, contained only the most proximal and known regulatory se-quences. SEAP chemiluminescence in the reporter cells´ supernatant reliably correlat-ed with the M1 treatment-induced CEBPD::SEAP gene expression. The final screening protocol was developed for semi-automatic screening in the 384-well format. In total, 2054 compounds from LOPAC®1280 and ENZO®774 libraries were screened twice using the enzymatic SEAP readout with subsequent analysis of 18 selected compounds: nine with the highest and nine with the lowest signals, further characterized by qPCR. Gene expression levels of endogenous CEBPD, CEBPD::SEAP reporter as well as, IL-6, IL-1β, and CCL2 as inflammatory markers were quantified. qPCR assays failed to corre-late to SEAP readout in 15 compounds within three standard deviations (SDs) from sol-vent control: nine low signal and six high signal compounds. Demonstrating both assay sensitivity and specificity, a correlation between qPCR gene expression and SEAP readout was observed for three hit compounds with signals above three SDs: BET inhib-itors (BETi) GSK 1210151A and Ro 11-1464 as well as an HDAC inhibitor (HDACi) vori-nostat. The control compound trichostatin A (TSA) that reproducibly upregulated SEAP readout is also an HDAC inhibitor with a similar structure to vorinostat and was there-fore included in the anti-inflammatory phenotype analysis. The observed suppression of IL-6, IL-1ß, and CCL2 gene expression by hit compounds suggested their anti-inflammatory effect in THP-1 reporter Mϕ. mRNA expression of IL-6 and CCL2 was suppressed by HDACi and BETi at both 4 and 24 hours, while BETi reduced IL-1β mRNA expression 24 hour time point. BETi significantly upregulated gene expression of both reporter CEBPD::SEAP and endogenous CEBPD, 4 hours after M1 treatment. At the same time point, HDACi completely abolished the mRNA expres-sion of the endogenous CEBPD, while simultaneously upregulating mRNA expression of the reporter CEBPD::SEAP. The use of the most proximal 300 base pairs region of en-dogenous CEBPD promoter, making the upstream regulatory elements unavailable in the assay, may account for differential expression levels of SEAP and C/EBPδ TF. This observation corroborated the need to include a longer and more extensive CEBPD´s gene regulatory area. Thus, an improved multi-gene-reporter cassette 2.0 was gener-ated to be used on the basis of a bacterial artificial chromosome (BAC) covering CE-BPD´s genomic area of about 200,000 base pairs. The generated screening assay is flexible, reliable, and sensitive displaying potential for drug discovery and drug repurposing. The pharmacological modulation of CEBPD gene expression, first reported for GSK 1210151A, Ro 11-1464, and vorinostat, contrib-utes to the understanding of inflammatory responses in Mϕ and may have RA thera-peutic applications.


Author(s):  
Laleh Sharifi ◽  
Mona Moshiri ◽  
Mohammad M.S. Dallal ◽  
Mohammad H. Asgardoon ◽  
Maryam Nourizadeh ◽  
...  

Background/Objectives: Anti-inflammatory agents play a crucial role in controlling inflammatory diseases such as Inflammatory Bowel Disease (IBD) but their use is restricted due to their vast side effects. M2000 (β-D-mannuronic acid) is a new immunomodulatory drug. According to the capacity of M2000 in suppressing some molecules involved in Toll Like Receptors (TLRs) signaling and reducing oxidative stress we hypothesize that, this molecule may have a potential role in decreasing inflammatory responses in IBD. The aim of this study was to evaluate the cytotoxicity of M2000 and its effect on the gene expression of TLR2 and TLR4. Methods: HEK293 cell line was grown and divided into 96-well cell plate and MTT assay was performed. HT29 cells were cultured and treated with low and high doses of M2000. Total RNA was extracted and cDNA synthesized and quantitative real-time PCR was done to quantify the TLR2 and TLR4 mRNA expression. Results: We found that M2000 at the concentration of ≤ 1000µg/ml had no obvious cytotoxicity effect on the HEK293 cells. Also, low and high doses of M2000 could significantly down-regulate both TLR2 and TLR4 mRNA expression. Moreover, a significant reduction in gene expression of TLR2 and TLR4 in an inflammatory condition resulted in high doses of M2000 in the presence of LPS. Conclusion: Our study which was conducted in colonic epithelial cell model, shows that M2000 can be considered as a new anti-inflammatory agent in IBD. However, more comprehensive experimental and clinical studies are required to recognize the molecular mechanism of M2000 and also its safety and efficacy.


2018 ◽  
Vol 20 (9) ◽  
pp. 804-819 ◽  
Author(s):  
Mohamed Boudjelal ◽  
Ana Maria Ruiz-Avendano ◽  
Gonzalo Colmenarejo ◽  
Sergio A. Senar-Sancho ◽  
Ashley Barnes ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sadaf Kalsum ◽  
Blanka Andersson ◽  
Jyotirmoy Das ◽  
Thomas Schön ◽  
Maria Lerm

Abstract Background Efficient high-throughput drug screening assays are necessary to enable the discovery of new anti-mycobacterial drugs. The purpose of our work was to develop and validate an assay based on live-cell imaging which can monitor the growth of two distinct phenotypes of Mycobacterium tuberculosis and to test their susceptibility to commonly used TB drugs. Results Both planktonic and cording phenotypes were successfully monitored as fluorescent objects using the live-cell imaging system IncuCyte S3, allowing collection of data describing distinct characteristics of aggregate size and growth. The quantification of changes in total area of aggregates was used to define IC50 and MIC values of selected TB drugs which revealed that the cording phenotype grew more rapidly and displayed a higher susceptibility to rifampicin. In checkerboard approach, testing pair-wise combinations of sub-inhibitory concentrations of drugs, rifampicin, linezolid and pretomanid demonstrated superior growth inhibition of cording phenotype. Conclusions Our results emphasize the efficiency of using automated live-cell imaging and its potential in high-throughput whole-cell screening to evaluate existing and search for novel antimycobacterial drugs.


2021 ◽  
pp. 247255522110006
Author(s):  
Lesley-Anne Pearson ◽  
Charlotte J. Green ◽  
De Lin ◽  
Alain-Pierre Petit ◽  
David W. Gray ◽  
...  

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) represents a significant threat to human health. Despite its similarity to related coronaviruses, there are currently no specific treatments for COVID-19 infection, and therefore there is an urgent need to develop therapies for this and future coronavirus outbreaks. Formation of the cap at the 5′ end of viral RNA has been shown to help coronaviruses evade host defenses. Nonstructural protein 14 (nsp14) is responsible for N7-methylation of the cap guanosine in coronaviruses. This enzyme is highly conserved among coronaviruses and is a bifunctional protein with both N7-methyltransferase and 3′-5′ exonuclease activities that distinguish nsp14 from its human equivalent. Mutational analysis of SARS-CoV nsp14 highlighted its role in viral replication and translation efficiency of the viral genome. In this paper, we describe the characterization and development of a high-throughput assay for nsp14 utilizing RapidFire technology. The assay has been used to screen a library of 1771 Food and Drug Administration (FDA)-approved drugs. From this, we have validated nitazoxanide as a selective inhibitor of the methyltransferase activity of nsp14. Although modestly active, this compound could serve as a starting point for further optimization.


Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 808
Author(s):  
Maurice Steenhuis ◽  
Corinne M. ten Hagen-Jongman ◽  
Peter van Ulsen ◽  
Joen Luirink

The structural integrity of the Gram-negative cell envelope is guarded by several stress responses, such as the σE, Cpx and Rcs systems. Here, we report on assays that monitor these responses in E. coli upon addition of antibacterial compounds. Interestingly, compromised peptidoglycan synthesis, outer membrane biogenesis and LPS integrity predominantly activated the Rcs response, which we developed into a robust HTS (high-throughput screening) assay that is suited for phenotypic compound screening. Furthermore, by interrogating all three cell envelope stress reporters, and a reporter for the cytosolic heat-shock response as control, we found that inhibitors of specific envelope targets induce stress reporter profiles that are distinct in quality, amplitude and kinetics. Finally, we show that by using a host strain with a more permeable outer membrane, large-scaffold antibiotics can also be identified by the reporter assays. Together, the data suggest that stress profiling is a useful first filter for HTS aimed at inhibitors of cell envelope processes.


Sign in / Sign up

Export Citation Format

Share Document