scholarly journals Rapid endothelial infection, endothelialitis and vascular damage characterise SARS-CoV-2 infection in a human lung-on-chip model

2020 ◽  
Author(s):  
Vivek V Thacker ◽  
Kunal Sharma ◽  
Neeraj Dhar ◽  
Gian-Filippo Mancini ◽  
Jessica Sordet-Dessimoz ◽  
...  

AbstractSevere cases of COVID-19 present with hypercoagulopathies and systemic endothelialitis of the lung microvasculature. The dynamics of vascular damage, and whether it is a direct consequence of endothelial infection or an indirect consequence of immune cell mediated cytokine storms is unknown. This is in part because in vitro models are typically epithelial cell monocultures or fail to recapitulate vascular physiology. We use a vascularised lung-on-chip model where, consistent with monoculture reports, low numbers of SARS-CoV-2 virions are released apically from alveolar epithelial cells. However, rapid infection of the underlying endothelial layer leads to the generation of clusters of endothelial cells with low or no CD31 expression, a progressive loss of endothelial barrier integrity, and a pro-coagulatory microenvironment. These morphological changes do not occur if these cells are exposed to the virus apically. Viral RNA persists in individual cells, which generates a response that is skewed towards NF-KB mediated inflammation, is typified by IL-6 secretion even in the absence of immune cells, and is transient in epithelial cells but persistent in endothelial cells. Perfusion with Tocilizumab, an inhibitor of trans IL-6 signalling slows the loss of barrier integrity but does not prevent the formation of endothelial cell clusters with reduced CD31 expression. SARS-CoV-2 mediated endothelial cell damage occurs despite a lack of rapid viral replication, in a cell-type specific manner and independently of immune-cell mediated cytokine storms, whose effect would only exacerbate the damage.

2007 ◽  
Vol 15 (2) ◽  
pp. 338-347 ◽  
Author(s):  
David McClenahan ◽  
Katrina Hellenbrand ◽  
Dhammika Atapattu ◽  
Nicole Aulik ◽  
David Carlton ◽  
...  

ABSTRACT Bovine respiratory disease resulting from infection with Mannheimia haemolytica commonly results in extensive vascular leakage into the alveoli. M. haemolytica produces two substances, lipopolysaccharide (LPS) and leukotoxin (LKT), that are known to be important in inducing some of the pathological changes. In the present study, we examined bovine pulmonary epithelial (BPE) cell and bovine lung microvascular endothelial cell monolayer permeability, as measured by trans-well endothelial and epithelial cell electrical resistance (TEER), after incubation with LPS, LKT, or LPS-activated neutrophils. Endothelial cell monolayers exposed to LPS exhibited significant decreases in TEER that corresponded with increased levels of proinflammatory cytokines, apoptosis, and morphological changes. In contrast, BPE cells exposed to LPS increased the levels of production of inflammatory cytokines but displayed no changes in TEER, apoptosis, or visible morphological changes. Both cell types appeared to express relatively equal levels of the LPS ligand Toll-like receptor 4. However, TEER in BPE cell monolayers was decreased when the cells were incubated with LPS-activated neutrophils. Although the incubation of BPE cells with LKT decreased TEER, this was not reduced by the incubation of LKT with a neutralizing antibody and was reversed when LKT was preincubated with the LPS-neutralizing compound polymyxin B. Because BPE cells did not express the LKT receptor CD11a/CD18, we infer that contaminating LPS was responsible for the decreased TEER. In conclusion, LPS triggered changes in endothelial cells that would be consistent with vascular leakage, but neither LPS nor LKT caused similar changes in epithelial cells, unless neutrophils were also present.


2012 ◽  
Vol 303 (2) ◽  
pp. L141-L151 ◽  
Author(s):  
Ayako Shigeta ◽  
Yuji Tada ◽  
Ji-Yang Wang ◽  
Shunsuke Ishizaki ◽  
Junichi Tsuyusaki ◽  
...  

Excessive apoptosis and prolonged inflammation of alveolar cells are associated with the pathogenesis of pulmonary emphysema. We aimed to determine whether CD40 affects alveolar epithelial cells and endothelial cells, with regard to evoking apoptosis and inflammation. Mice were repeatedly treated with agonistic-anti CD40 antibody (Ab), with or without agonistic-anti Fas Ab, and evaluated for apoptosis and inflammation in lungs. Human pulmonary microvascular endothelial cells and alveolar epithelial cells were treated with agonistic anti-CD40 Ab and/or anti-Fas Ab to see their direct effect on apoptosis and secretion of proinflammatory molecules in vitro. Furthermore, plasma soluble CD40 ligand (sCD40L) level was evaluated in patients with chronic obstructive pulmonary disease (COPD). In mice, inhaling agonistic anti-CD40 Ab induced moderate alveolar enlargement. CD40 stimulation, in combination with anti-Fas Ab, induced significant emphysematous changes and increased alveolar cell apoptosis. CD40 stimulation also enhanced IFN-γ-mediated emphysematous changes, not via apoptosis induction, but via inflammation with lymphocyte accumulation. In vitro, Fas-mediated apoptosis was enhanced by CD40 stimulation and IFN-γ in endothelial cells and by CD40 stimulation in epithelial cells. CD40 stimulation induced secretion of CCR5 ligands in endothelial cells, enhanced with IFN-γ. Plasma sCD40L levels were significantly increased in patients with COPD, inversely correlating to the percentage of forced expiratory volume in 1 s and positively correlating to low attenuation area score by CT scan, regardless of smoking history. Collectively CD40 plays a contributing role in the development of pulmonary emphysema by sensitizing Fas-mediated apoptosis in alveolar cells and increasing the secretion of proinflammatory chemokines.


1995 ◽  
Vol 269 (1) ◽  
pp. L127-L135 ◽  
Author(s):  
W. W. Barton ◽  
S. Wilcoxen ◽  
P. J. Christensen ◽  
R. Paine

Intercellular adhesion molecule-1 (ICAM-1) is expressed at high levels on type I alveolar epithelial cells in the normal lung and is induced in vitro as type II cells spread in primary culture. In contrast, in most nonhematopoetic cells ICAM-1 expression is induced in response to inflammatory cytokines. We have formed the hypothesis that the signals that control ICAM-1 expression in alveolar epithelial cells are fundamentally different from those controlling expression in most other cells. To test this hypothesis, we have investigated the influence of inflammatory cytokines on ICAM-1 expression in isolated type II cells that have spread in culture and compared this response to that of rat pulmonary artery endothelial cells (RPAEC). ICAM-1 protein, determined both by a cell-based enzyme-linked immunosorbent assay and by Western blot analysis, and mRNA were minimally expressed in unstimulated RPAEC but were significantly induced in a time- and dose-dependent manner by treatment with tumor necrosis factor-alpha, interleukin-1 beta, or interferon-gamma. In contrast, these cytokines did not influence the constitutive high level ICAM-1 protein expression in alveolar epithelial cells and only minimally affected steady-state mRNA levels. ICAM-1 mRNA half-life, measured in the presence of actinomycin D, was relatively long at 7 h in alveolar epithelial cells and 4 h in RPAEC. The striking lack of response of ICAM-1 expression by alveolar epithelial cells to inflammatory cytokines is in contrast to virtually all other epithelial cells studied to date and supports the hypothesis that ICAM-1 expression by these cells is a function of cellular differentiation.(ABSTRACT TRUNCATED AT 250 WORDS)


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 67-67
Author(s):  
Kimon Argyropoulos ◽  
Enrico Velardi ◽  
Jennifer Tsai ◽  
Amina Lazrak ◽  
Lorenz Jahn ◽  
...  

Abstract The thymus is extremely sensitive to exogenous insults but has a remarkable capacity to regenerate which is lost with age. Reactive oxygen species (ROS) accumulate early after tissue damage and despite their toxic potential, ROS and their byproducts (such as lipid peroxidation products-LPPs) can act as regeneration signals by activating membrane or intracellular sensors and subsequent stress-response signalling pathways. Using Sublethal Total Body Irradiation (SL-TBI) as a model of acute thymic injury, we found a rapid accumulation of thymic ROS as well as lipid peroxidation products on cell membranes after SLTBI (Figure 1A&B). The damage-sensing ion channel Transient Receptor Potential cation channel family A member 1 (TRPA1) represents one of the major damage sensing receptors that can mediate cellular responses to oxidative stress mediators, such as LPPs. Using immunofluorescence (IF) microscopy we found that TRPA1 is enriched in the thymic medulla. Interestingly, although TRPA1 has been classically identified in nociceptive fibers, the major TRPA1 expressing structures in the thymus were not nerve fiber terminals, but primarily thymic endothelial cells (Figure1C), fibroblasts and subsets of epithelial cells. We have recently demonstrated that thymic endothelial cells can regulate regeneration through secretion of BMP-4, which can enhance Foxn1 expression and proliferation of thymic epithelial cells. In order to assess the functional role of TRPA1 in thymic regeneration after injury, we utilized TRPA1 knockout (TRPA1-/-) mice and quantified thymic reconstitution after SL-TBI. TRPA1-/- mice had significantly lower thymic cellularity compared to their age- and sex-matched WT controls, suggesting an association between TRPA1 deficiency and delayed endogenous thymic recovery (Figure 1D). The major deficit in thymocyte counts primarily affected double negative-4 (DN4), double positive (DP) and CD4+ single positive (SP-CD4+) thymocyte numbers. The thymic stroma of TRPA1-/- mice had lower endothelial cell and fibroblast counts (Figure 1D). In accordance with these findings drinking water administration of the TRPA1 agonist Allyl-Isothiocyanate (AITC), resulted in enhanced thymic regeneration after radiation exposure. Besides its positive effects on thymocyte counts, AITC significantly augmented endothelial cell counts after irradiation (Figure 1E). In conclusion these results suggest that TRPA1 plays a non-redundant role in thymic regeneration and that exogenous TRPA1 stimulation can enhance immune recovery after damage. Disclosures van den Brink: Seres: Research Funding; Jazz Pharmaceuticals: Consultancy; PureTech Health: Consultancy; Therakos Institute: Other: Speaking engagement.


2018 ◽  
Vol 470 (11) ◽  
pp. 1615-1631 ◽  
Author(s):  
André Dagenais ◽  
Julie Desjardins ◽  
Waheed Shabbir ◽  
Antoine Roy ◽  
Dominic Filion ◽  
...  

Vaccines ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 70 ◽  
Author(s):  
Gerna ◽  
Kabanova ◽  
Lilleri

In the 1970s–1980s, a striking increase in the number of disseminated human cytomegalovirus (HCMV) infections occurred in immunosuppressed patient populations. Autopsy findings documented the in vivo disseminated infection (besides fibroblasts) of epithelial cells, endothelial cells, and polymorphonuclear leukocytes. As a result, multiple diagnostic assays, such as quantification of HCMV antigenemia (pp65), viremia (infectious virus), and DNAemia (HCMV DNA) in patient blood, were developed. In vitro experiments showed that only low passage or endothelial cell-passaged clinical isolates, and not laboratory-adapted strains, could reproduce both HCMV leuko- and endothelial cell-tropism, which were found through genetic analysis to require the three viral genes UL128, UL130, and UL131 of the HCMV UL128 locus (UL128L). Products of this locus, together with gH/gL, were shown to form the gH/gL/pUL128L pentamer complex (PC) required for infection of epithelial cells/endothelial cells, whereas gH/gL and gO form the gH/gL/gO trimer complex (TC) required for infection of all cell types. In 2016, following previous work, a receptor for the TC that mediates entry into fibroblasts was identified as PDGFRα, while in 2018, a receptor for the PC that mediates entry into endothelial/epithelial cells was identified as neuropilin2 (Nrp2). Furthermore, the olfactory receptor family member OR14I1 was recently identified as a possible additional receptor for the PC in epithelial cells. Thus, current data support two models of viral entry: (i) in fibroblasts, following interaction of PDGFRα with TC, the latter activates gB to fuse the virus envelope with the cell membrane, whereas (ii) in epithelial cells/endothelial cells, interaction of Nrp2 (and OR14I1) with PC promotes endocytosis of virus particles, followed by gB activation by gH/gL/gO (or gH/gL) and final low-pH entry into the cell.


1995 ◽  
Vol 269 (4) ◽  
pp. L482-L491 ◽  
Author(s):  
Y. Zhao ◽  
S. L. Young

Tenascin (TN) is a hexameric extracellular matrix glycoprotein that may play an important role during lung development. TN protein is temporally and spatially restricted during lung organogenesis. The temporo-spatial and cellular expression of TN mRNA in lung remains unclear. Localization of message expression of TN in rat lung tissue was first investigated by using in situ hybridization performed with an antisense RNA probe. TN mRNA was present primarily within the mesenchyme of day 16 gestational age fetal rat lung tissue, whereas immunoreactive TN protein was found along the basement membrane. In postnatal day 3 rat lung tissue, TN mRNA was detected along alveolar septal walls and was concentrated at secondary septal tips. Expression of TN message was consistent with localization of immunoreactive TN protein. Accumulation of TN mRNA in alveolar septal tips suggests that mesenchyme may be the major source of TN mRNA. To investigate the cellular source of TN in rat lung, we studied the expression of TN in cultured rat lung fibroblasts, endothelial cells, and alveolar epithelial cells. Two TN isoforms having molecular mass of 230 and 180 kDa were in conditioned medium and in cellular extracts of lung fibroblasts and endothelial cells. TN was secreted and deposited in the extracellular matrix closely associated with the surface of lung fibroblasts and endothelial cells. Lung alveolar epithelial cells showed undetectable or barely detectable amounts of TN. These studies demonstrated that TN isoforms are expressed not only by lung fibroblasts but also by lung endothelial cells. The unique spatial localization of TN mRNA during lung development and expression of TN by different lung cell types suggested TN may be involved in matrix organization and cell-cell interactions during lung development.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Guojian Jiang ◽  
Tingjun Fan

The introduction of intracameral anaesthesia by injection of lidocaine has become popular in cataract surgery for its inherent potency, rapid onset, tissue penetration, and efficiency. However, intracameral lidocaine causes corneal thickening, opacification, and corneal endothelial cell loss. Herein, we investigated the effects of lidocaine combined with sodium ferulate, an antioxidant with antiapoptotic and anti-inflammatory properties, on lidocaine-induced damage of corneal endothelia with in vitro experiment of morphological changes and cell viability of cultured human corneal endothelial cells and in vivo investigation of corneal endothelial cell density and central corneal thickness of cat eyes. Our finding indicates that sodium ferulate from 25 to 200 mg/L significantly reduced 2 g/L lidocaine-induced toxicity to human corneal endothelial cells, and 50 mg/L sodium ferulate recovered the damaged human corneal endothelial cells to normal growth status. Furthermore, 100 mg/L sodium ferulate significantly inhibited lidocaine-induced corneal endothelial cell loss and corneal thickening in cat eyes. In conclusion, sodium ferulate protects human corneal endothelial cells from lidocaine-induced cytotoxicity and attenuates corneal endothelial cell loss and central corneal thickening of cat eyes after intracameral injection with lidocaine. It is likely that the antioxidant effect of sodium ferulate reduces the cytotoxic and inflammatory corneal reaction during intracameral anaesthesia.


1994 ◽  
Vol 76 (3) ◽  
pp. 1002-1010 ◽  
Author(s):  
P. J. Fracica ◽  
S. P. Caminiti ◽  
C. A. Piantadosi ◽  
F. G. Duhaylongsod ◽  
J. D. Crapo ◽  
...  

Diffuse lung injury is accompanied by low compliance and hypoxemia with histological evidence of endothelial and alveolar epithelial cell disruption. The histological effects of treatment of an acute diffuse lung injury with a natural surfactant product were evaluated in a primate model because surfactant function and content have been shown to be abnormal in diffuse lung injury in both animals and humans. Ten baboons were ventilated with 100% O2 for 96 h, and 5 were given an aerosol of natural porcine surfactant. Physiological and biochemical measurements of the effects of hyperoxia and surfactant treatment are presented in a companion paper. After O2 exposure, lungs were fixed and processed for quantitative electron microscopy. The responses to O2 included epithelial and endothelial cell injuries, interstitial edema, and inflammation. The hyperoxic animals treated with surfactant were compared with the untreated animals; the treatments altered neutrophil distribution, fibroblast proliferation, and changes in the volumes of type I epithelial cells and endothelial cells. Surfactant-treated animals also had decreased lamellar body volume density in type II epithelial cells and preservation of endothelial cell integrity. These changes suggest complex effects of natural surfactant on the pulmonary response to hyperoxia, including protection against epithelial and endothelial cell destruction as well as significant interstitial inflammation and fibroblast proliferation. We conclude that natural surfactant treatment of hyperoxic lung injury in primates resulted in partial protection of epithelial and endothelial cells but also increased the accumulation of fibroblasts in the lung.


Sign in / Sign up

Export Citation Format

Share Document