The SOD-2 protein is the single active SOD enzyme in C. elegans

2020 ◽  
Author(s):  
Lourds M. Fernando ◽  
Silwat Adeel ◽  
Mohammed Abul Basar ◽  
Anna K. Allen ◽  
Atanu Duttaroy

ABSTRACTThe nematode C. elegans has a contingent of five sod genes, one of the largest among aerobic organism. Earlier studies revealed each of the five sod genes is capable of making perfectly active SOD proteins in heterologous expressions systems therefore none appears to be a pseudogene. Yet deletion of the entire contingent of sod genes fails to impose any effect on the survival of C. elegans except these animals appear more sensitive to extraneously applied oxidative stress condition. We asked how many of the five sod genes are actually active in C. elegans through an in-gel SOD activity analysis. Here we provide evidence that out of the five genes only the mitochondrial SOD gene is active in C. elegans, albeit at a much lesser amount compared to D. melanogaster and E. coli. Mutant analysis further confirmed that among the mitochondrial forms, SOD-2 is the only naturally active SOD in C. elegans.

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Chunxiu Lin ◽  
Xiaoying Zhang ◽  
Zuanxian Su ◽  
Jie Xiao ◽  
Muwen Lv ◽  
...  

Carnosol, a phenolic diterpene, is one of the main constituents of Rosmarinus. It is known to possess a range of bioactivities, including antioxidant, anticancer, antimicrobial, and anti-inflammatory properties. Nevertheless, the antiaging effects of carnosol have received little attention. This study first indicated that carnosol increased the healthspan of Caenorhabditis elegans (C. elegans). First, compared with the control condition, carnosol treatment effectively decreased ROS accumulation under normal or oxidative stress condition, significantly increased several key antioxidant enzyme activities, and significantly decreased MDA content. Second, carnosol effectively prolonged lifespan under normal and stress conditions and slowed aging-related declines, including mobility, age pigmentation, and neurodegenerative disease, but had no effect on fertility and fat deposition. Finally, carnosol-mediated longevity required the upregulated expression of sod-3, sod-5, hsf-1, hsp-16.1, and hsp-16.2 and was dependent on the hsf-1 gene. Increased DAF-16 translocation was observed, but daf-16 was independent of the effects on lifespan induced by carnosol. These results suggested that carnosol might serve as a good source of natural antioxidants, and in particular, carnosol could be explored as a potential dietary supplement to slow aging.


Author(s):  
Haibo Sui ◽  
Qince Li ◽  
Kuanquan Wang ◽  
Funebi Francis Ijebu ◽  
Yongfeng Yuan ◽  
...  

Biologia ◽  
2011 ◽  
Vol 66 (5) ◽  
Author(s):  
Meltem Akbas ◽  
Tugrul Doruk ◽  
Serhat Ozdemir ◽  
Benjamin Stark

AbstractIn Escherichia coli, Vitreoscilla hemoglobin (VHb) protects against oxidative stress, perhaps, in part, by oxidizing OxyR. Here this protection, specifically VHb-associated effects on superoxide dismutase (SOD) and catalase levels, was examined. Exponential or stationary phase cultures of SOD+ or SOD− E. coli strains with or without VHb and oxyR antisense were treated with 2 mM hydrogen peroxide without sublethal peroxide induction, and compared to untreated control cultures. The hydrogen peroxide treatment was toxic to both SOD+ and SOD− cells, but much more to SOD− cells; expression of VHb in SOD+ strains enhanced this toxicity. In contrast, the presence of VHb was generally associated in the SOD+ background with a modest increase in SOD activity that was not greatly affected by oxyR antisense or peroxide treatment. In both SOD+ and SOD− backgrounds, VHb was associated with higher catalase activity both in the presence and absence of peroxide. Contrary to its stimulatory effects in stationary phase, in exponential phase oxyR antisense generally decreased VHb levels.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Fernanda Vacante ◽  
Pamela Senesi ◽  
Anna Montesano ◽  
Alice Frigerio ◽  
Livio Luzi ◽  
...  

Background. Metabolic alterations as hyperglycemia and inflammation induce myocardial molecular events enhancing oxidative stress and mitochondrial dysfunction. Those alterations are responsible for a progressive loss of cardiomyocytes, cardiac stem cells, and consequent cardiovascular complications. Currently, there are no effective pharmacological measures to protect the heart from these metabolic modifications, and the development of new therapeutic approaches, focused on improvement of the oxidative stress condition, is pivotal. The protective effects of levocarnitine (LC) in patients with ischemic heart disease are related to the attenuation of oxidative stress, but LC mechanisms have yet to be fully understood. Objective. The aim of this work was to investigate LC’s role in oxidative stress condition, on ROS production and mitochondrial detoxifying function in H9c2 rat cardiomyocytes during hyperglycemia. Methods. H9c2 cells in the hyperglycemic state (25 mmol/L glucose) were exposed to 0.5 or 5 mM LC for 48 and 72 h: LC effects on signaling pathways involved in oxidative stress condition were studied by Western blot and immunofluorescence analysis. To evaluate ROS production, H9c2 cells were exposed to H2O2 after LC pretreatment. Results. Our in vitro study indicates how LC supplementation might protect cardiomyocytes from oxidative stress-related damage, preventing ROS formation and activating antioxidant signaling pathways in hyperglycemic conditions. In particular, LC promotes STAT3 activation and significantly increases the expression of antioxidant protein SOD2. Hyperglycemic cardiac cells are characterized by impairment in mitochondrial dysfunction and the CaMKII signal: LC promotes CaMKII expression and activation and enhancement of AMPK protein synthesis. Our results suggest that LC might ameliorate metabolic aspects of hyperglycemic cardiac cells. Finally, LC doses herein used did not modify H9c2 growth rate and viability. Conclusions. Our novel study demonstrates that LC improves the microenvironment damaged by oxidative stress (induced by hyperglycemia), thus proposing this nutraceutical compound as an adjuvant in diabetic cardiac regenerative medicine.


Marine Drugs ◽  
2020 ◽  
Vol 18 (10) ◽  
pp. 490
Author(s):  
Xuesong Yu ◽  
Qina Su ◽  
Tianqi Shen ◽  
Qiong Chen ◽  
Ying Wang ◽  
...  

The hydrolysate of golden cuttlefish (Sepia esculenta) was prepared by using papain, and then, it was further separated by ultrafiltration, gel filtration chromatography, and reverse-phase high-performance liquid chromatography (RP-HPLC). The peptide components of the active fraction were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and then two novel peptides, SeP2 (DVEDLEAGLAK, 1159.27 Da) and SeP5 (EITSLAPSTM, 1049.22 Da), were obtained and displayed significant alleviation effects on oxidative stress in Caenorhabditis elegans. Studies indicated that S. esculenta antioxidant peptides (SePs) increase superoxide dismutase (SOD) activity but reduce reactive oxygen species (ROS) and malondialdehyde (MDA) levelsin oxidation-damaged nematodes. Using transgenic CF1553 nematodes, the sod-3p::GFP expression in the worms treated with SePs was significantly higher than that of the control nematodes. Real-time PCR also demonstrated that the expression of stress-related genes such as sod-3 is up-regulated by SePs. Furthermore, studies showed that SePs could obviously decrease fat accumulation as well as reduce the elevated ROS and MDA levels in high-fat nematodes. Taken together, these results indicated that SePs are capable of the activation of antioxidant defense and the inhibition of free radicals and lipid peroxidation, play important roles in attenuating oxidative stress and fat accumulation in C. elegans, and might have the potential to be used in nutraceutical and functional foods.


2001 ◽  
Vol 183 (1) ◽  
pp. 101-108 ◽  
Author(s):  
Heather L. Lumppio ◽  
Neeta V. Shenvi ◽  
Anne O. Summers ◽  
Gerrit Voordouw ◽  
Donald M. Kurtz

ABSTRACT Evidence is presented for an alternative to the superoxide dismutase (SOD)-catalase oxidative stress defense system inDesulfovibrio vulgaris (strain Hildenborough). This alternative system consists of the nonheme iron proteins, rubrerythrin (Rbr) and rubredoxin oxidoreductase (Rbo), the product of therbo gene (also called desulfoferrodoxin). A Δrbo strain of D. vulgaris was found to be more sensitive to internal superoxide exposure than was the wild type. Unlike Rbo, expression of plasmid-borne Rbr failed to restore the aerobic growth of a SOD-deficient strain of Escherichia coli. Conversely, plasmid-borne expression of two different Rbrs from D. vulgaris increased the viability of a catalase-deficient strain of E. coli that had been exposed to hydrogen peroxide whereas Rbo actually decreased the viability. A previously undescribed D. vulgaris gene was found to encode a protein having 50% sequence identity to that of E. coliFe-SOD. This gene also encoded an extended N-terminal sequence with high homologies to export signal peptides of periplasmic redox proteins. The SOD activity of D. vulgaris is not affected by the absence of Rbo and is concentrated in the periplasmic fraction of cell extracts. These results are consistent with a superoxide reductase rather than SOD activity of Rbo and with a peroxidase activity of Rbr. A joint role for Rbo and Rbr as a novel cytoplasmic oxidative stress protection system in D. vulgaris and other anaerobic microorganisms is proposed.


Sign in / Sign up

Export Citation Format

Share Document