scholarly journals FAM13A regulates maturation and effector functions of natural killer cells

2020 ◽  
Author(s):  
Ni Zeng ◽  
Maud Theresine ◽  
Christophe Capelle ◽  
Neha Patil ◽  
Cécile Masquelier ◽  
...  

AbstractThe education or licensing process is essentially required for the proper anti-tumor function of natural killer (NK) cells. Although several models for education have been proposed, the genetic factors regulating these processes still remain largely elusive. Here we show that FAM13A (family with sequence similarity 13, member A), strongly linked to the risk of prominent death-causing lung diseases, i.e., lung cancer and chronic obstructive pulmonary disease, critically modulated NK cell maturation and effector functions. Fam13a depletion promoted NK cell maturation, KLRG1 (killer cell lectin-like receptor G1) expression in NK cells and NK terminal differentiation in homeostatic mice. NK cells from Fam13a-deficient mice had impaired IFN-γ production and degranulation. Strikingly, the number of lung metastases induced by B16F10 melanoma cells was increased in Fam13a-deficient mice. Collectively, our data reveal a pivotal role of FAM13A in slowing down NK maturation, but promoting NK cell effector functions and immune protection against tumor metastasis.

2019 ◽  
Vol 116 (35) ◽  
pp. 17409-17418 ◽  
Author(s):  
Xuefu Wang ◽  
Rui Sun ◽  
Xiaolei Hao ◽  
Zhe-Xiong Lian ◽  
Haiming Wei ◽  
...  

Increasing evidence demonstrates that IL-17A promotes tumorigenesis, metastasis, and viral infection. Natural killer (NK) cells are critical for defending against tumors and infections. However, the roles and mechanisms of IL-17A in regulating NK cell activity remain elusive. Herein, our study demonstrated that IL-17A constrained NK cell antitumor and antiviral activity by restraining NK cell maturation. It was observed that the development and metastasis of tumors were suppressed in IL-17A–deficient mice in the NK cell-dependent manner. In addition, the antiviral activity of NK cells was also improved in IL-17A–deficient mice. Mechanistically, ablation of IL-17A signaling promoted generation of terminally mature CD27−CD11b+ NK cells, whereas constitutive IL-17A signaling reduced terminally mature NK cells. Parabiosis or mixed bone marrow chimeras from Il17a−/−and wild-type (WT) mice could inhibit excessive generation of terminally mature NK cells induced by IL-17A deficiency. Furthermore, IL-17A desensitized NK cell responses to IL-15 and suppressed IL-15–induced phosphorylation of signal transducer and activator of transcription 5 (STAT5) via up-regulation of SOCS3, leading to down-regulation of Blimp-1. Therefore, IL-17A acts as the checkpoint during NK cell terminal maturation, which highlights potential interventions to defend against tumors and viral infections.


Cancers ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 2 ◽  
Author(s):  
Marisa Market ◽  
Katherine Baxter ◽  
Leonard Angka ◽  
Michael Kennedy ◽  
Rebecca Auer

Natural Killer (NK) cells are granular lymphocytes of the innate immune system that are able to recognize and kill tumor cells without undergoing clonal selection. Discovered over 40 years ago, they have since been recognized to possess both cytotoxic and cytokine-producing effector functions. Following trauma, NK cells are suppressed and their effector functions are impaired. This is especially important for cancer patients undergoing the removal of solid tumors, as surgery has shown to contribute to the development of metastasis and cancer recurrence postoperatively. We have recently shown that NK cells are critical mediators in the formation of metastasis after surgery. While research into the mechanism(s) responsible for NK cell dysfunction is ongoing, knowledge of these mechanisms will pave the way for perioperative therapeutics with the potential to improve cancer outcomes by reversing NK cell dysfunction. This review will discuss mechanisms of suppression in the postoperative environment, including hypercoagulability, suppressive soluble factors, the expansion of suppressive cell populations, and how this affects NK cell biology, including modulation of cell surface receptors, the potential for anergy, and immunosuppressive NK cell functions. This review will also outline potential immunotherapies to reverse postoperative NK dysfunction, with the goal of preventing surgery-induced metastasis.


2012 ◽  
Vol 209 (5) ◽  
pp. 947-954 ◽  
Author(s):  
Joseph C. Sun ◽  
Sharline Madera ◽  
Natalie A. Bezman ◽  
Joshua N. Beilke ◽  
Mark H. Kaplan ◽  
...  

Although natural killer (NK) cells are classified as innate immune cells, recent studies demonstrate that NK cells can become long-lived memory cells and contribute to secondary immune responses. The precise signals that promote generation of long-lived memory NK cells are unknown. Using cytokine receptor-deficient mice, we show that interleukin-12 (IL-12) is indispensible for mouse cytomegalovirus (MCMV)-specific NK cell expansion and generation of memory NK cells. In contrast to wild-type NK cells that proliferated robustly and resided in lymphoid and nonlymphoid tissues for months after MCMV infection, IL-12 receptor–deficient NK cells failed to expand and were unable to mediate protection after MCMV challenge. We further demonstrate that a STAT4-dependent IFN-γ–independent mechanism contributes toward the generation of memory NK cells during MCMV infection. Understanding the full contribution of inflammatory cytokine signaling to the NK cell response against viral infection will be of interest for the development of vaccines and therapeutics.


Blood ◽  
2011 ◽  
Vol 117 (6) ◽  
pp. 1869-1879 ◽  
Author(s):  
Axel Kallies ◽  
Sebastian Carotta ◽  
Nicholas D. Huntington ◽  
Nicholas J. Bernard ◽  
David M. Tarlinton ◽  
...  

Abstract Natural killer (NK) cells are innate lymphocytes capable of immediate effector functions including cytokine production and cytotoxicity. Compared with B and T cells, the factors that control the peripheral maturation of NK cells are poorly understood. We show that Blimp1, a transcriptional repressor required for the differentiation of plasma cells and short-lived effector T cells, is expressed by NK cells throughout their development. Interleukin 15 (IL-15) is required for the early induction of Blimp1 in NK cells, with expression increasing in the most mature subsets of mouse and human NK cells. We show that Blimp1 is required for NK-cell maturation and homeostasis and for regulating their proliferative potential. It is also essential for high granzyme B expression, but not for most cytokine production and cytotoxicity. Surprisingly, interferon regulatory factor 4 (IRF4) and B-cell lymphoma 6 (Bcl6), 2 transcription factors crucial for the regulation of Blimp1 in B and T cells, are largely dispensable for Blimp1 expression in NK cells. T-bet deficiency, however, leads to attenuated Blimp1 expression. We have identified NK cells as the first hematopoietic cell type in which the IRF4-Blimp1-Bcl6 regulatory axis is not in operation, highlighting the distinct nature of the NK-cell gene-regulatory network.


2022 ◽  
Vol 119 (3) ◽  
pp. e2114134119
Author(s):  
Shoubao Ma ◽  
Tingting Tang ◽  
Xiaojin Wu ◽  
Anthony G. Mansour ◽  
Ting Lu ◽  
...  

The axis of platelet-derived growth factor (PDGF) and PDGF receptor-beta (PDGFRβ) plays prominent roles in cell growth and motility. In addition, PDGF-D enhances human natural killer (NK) cell effector functions when binding to the NKp44 receptor. Here, we report an additional but previously unknown role of PDGF-D, whereby it mediates interleukin-15 (IL-15)–induced human NK cell survival but not effector functions via its binding to PDGFRβ but independent of its binding to NKp44. Resting NK cells express no PDGFRβ and only a low level of PDGF-D, but both are significantly up-regulated by IL-15, via the nuclear factor κB signaling pathway, to promote cell survival in an autocrine manner. Both ectopic and IL-15–induced expression of PDGFRβ improves NK cell survival in response to treatment with PDGF-D. Our results suggest that the PDGF-D−PDGFRβ signaling pathway is a mechanism by which IL-15 selectively regulates the survival of human NK cells without modulating their effector functions.


1998 ◽  
Vol 188 (11) ◽  
pp. 2067-2074 ◽  
Author(s):  
Kazunori Imada ◽  
Eda T. Bloom ◽  
Hiroshi Nakajima ◽  
Judith A. Horvath-Arcidiacono ◽  
Garry B. Udy ◽  
...  

We have analyzed the immune system in Stat5-deficient mice. Although Stat5a−/− splenocytes have a partial defect in anti-CD3-induced proliferation that can be overcome by high dose interleukin (IL)-2, we now demonstrate that defective proliferation in Stat5b−/− splenocytes cannot be corrected by this treatment. Interestingly, this finding may be at least partially explained by diminished expression of the IL-2 receptor β chain (IL-2Rβ), which is a component of the receptors for both IL-2 and IL-15, although other defects may also exist. Similar to the defect in proliferation in activated splenocytes, freshly isolated splenocytes from Stat5b−/− mice exhibited greatly diminished proliferation in response to IL-2 and IL-15. This results from both a decrease in the number and responsiveness of natural killer (NK) cells. Corresponding to the diminished proliferation, basal as well as IL-2– and IL-15–mediated boosting of NK cytolytic activity was also greatly diminished. These data indicate an essential nonredundant role for Stat5b for potent NK cell–mediated proliferation and cytolytic activity.


2018 ◽  
Author(s):  
Alberto J. Millan ◽  
Sonny R. Elizaldi ◽  
Eric M. Lee ◽  
Jeffrey O. Aceves ◽  
Deepa Murugesh ◽  
...  

AbstractNatural killer (NK) cells are specialized lymphocytes with the innate ability to eliminate virally infected and cancerous cells, but the mechanisms that control NK cell development and cytotoxicity are incompletely understood. We identified novel roles for Sclerostin domain containing-1 (Sostdc1) in NK cell development and function. Sostdc1-knockout (Sostdc1-/-) mice display a progressive accumulation of transitional NK cells (CD27+CD11b+, tNK) with age, indicating a partial developmental block. The Ly49 repertoire on NK cells in Sostdc1-/- mice is also changed. Lower frequencies of Sostdc1-/- splenic tNKs express inhibitory Ly49G2 receptors, but higher frequencies express activating Ly49H and Ly49D receptors. However, the frequencies of Ly49I+, G2+, H+ and D+ populations were universally decreased at the most mature (CD27-CD11b+, mNK) stage. We hypothesized that the Ly49 repertoire in Sostdc1-/- mice would correlate with NK killing ability, and observed that Sostdc1-/- NK cells are hyporesponsive against MHC-I-deficient cell targets in vitro and in vivo, despite higher CD107a surface levels and similar IFNγ expression to controls. Consistent with Sostdc1’s known role in the regulation of Wnt signaling, high levels of Wnt coactivators Tcf7 and Lef1 were observed in Sostdc1-/- NK cells. Expression of the NK development gene Id2 was decreased in Sostdc1-/- iNK and tNK cells, but we observed no changes in Eomes and Tbx21 expression. Reciprocal bone marrow transplant experiments showed that Sostdc1 regulates NK cell maturation and expression of Ly49 receptors in a cell-extrinsic fashion from both non-hematopoietic and hematopoietic sources. Taken together, these data support a role for Sostdc1 in the regulation of NK cell maturation, and NK cell cytotoxicity, and identify potential NK cell niches.Summary of ResultsSostdc1-/- mice display a partial block between the tNK and mNK developmental stages.Sostdc1 influences the Ly49 receptor repertoire on NK cells.NK cells in Sostdc1-/- mice display impaired ability to kill β2m-/- target cells.Sostdc1-/- NK cell subsets express high levels of Wnt coactivators Tcf7 and Lef1.Id2 expression is decreased in iNK and tNK cells in the absence of Sostdc1.Bone marrow transplantation experiments demonstrate cell-extrinsic regulation of NK cell maturation by Sostdc1 in both non-hematopoietic (stromal) and hematopoietic cells.


Blood ◽  
2012 ◽  
Vol 120 (3) ◽  
pp. 592-602 ◽  
Author(s):  
Simon Bélanger ◽  
Megan M. Tu ◽  
Mir Munir Ahmed Rahim ◽  
Ahmad B. Mahmoud ◽  
Rajen Patel ◽  
...  

Abstract Ly49-mediated recognition of MHC-I molecules on host cells is considered vital for natural killer (NK)–cell regulation and education; however, gene-deficient animal models are lacking because of the difficulty in deleting this large multigene family. Here, we describe NK gene complex knockdown (NKCKD) mice that lack expression of Ly49 and related MHC-I receptors on most NK cells. NKCKD NK cells exhibit defective killing of MHC-I–deficient, but otherwise normal, target cells, resulting in defective rejection by NKCKD mice of transplants from various types of MHC-I–deficient mice. Self–MHC-I immunosurveillance by NK cells in NKCKD mice can be rescued by self–MHC-I–specific Ly49 transgenes. Although NKCKD mice display defective recognition of MHC-I–deficient tumor cells, resulting in decreased in vivo tumor cell clearance, NKG2D- or antibody-dependent cell-mediated cytotoxicity–induced tumor cell cytotoxicity and cytokine production induced by activation receptors was efficient in Ly49-deficient NK cells, suggesting MHC-I education of NK cells is a single facet regulating their total potential. These results provide direct genetic evidence that Ly49 expression is necessary for NK-cell education to self–MHC-I molecules and that the absence of these receptors leads to loss of MHC-I–dependent “missing-self” immunosurveillance by NK cells.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 866
Author(s):  
Baca Chan ◽  
Maja Arapović ◽  
Laura Masters ◽  
Francois Rwandamuiye ◽  
Stipan Jonjić ◽  
...  

As the largest herpesviruses, the 230 kb genomes of cytomegaloviruses (CMVs) have increased our understanding of host immunity and viral escape mechanisms, although many of the annotated genes remain as yet uncharacterised. Here we identify the m15 locus of murine CMV (MCMV) as a viral modulator of natural killer (NK) cell immunity. We show that, rather than discrete transcripts from the m14, m15 and m16 genes as annotated, there are five 3′-coterminal transcripts expressed over this region, all utilising a consensus polyA tail at the end of the m16 gene. Functional inactivation of any one of these genes had no measurable impact on viral replication. However, disruption of all five transcripts led to significantly attenuated dissemination to, and replication in, the salivary glands of multiple strains of mice, but normal growth during acute infection. Disruption of the m15 locus was associated with heightened NK cell responses, including enhanced proliferation and IFNγ production. Depletion of NK cells, but not T cells, rescued salivary gland replication and viral shedding. These data demonstrate the identification of multiple transcripts expressed by a single locus which modulate, perhaps in a concerted fashion, the function of anti-viral NK cells.


Blood ◽  
2011 ◽  
Vol 117 (10) ◽  
pp. 2874-2882 ◽  
Author(s):  
Karine Crozat ◽  
Céline Eidenschenk ◽  
Baptiste N. Jaeger ◽  
Philippe Krebs ◽  
Sophie Guia ◽  
...  

Abstract Natural killer (NK) cells are innate immune cells that express members of the leukocyte β2 integrin family in humans and mice. These CD11/CD18 heterodimers play critical roles in leukocyte trafficking, immune synapse formation, and costimulation. The cell-surface expression of one of these integrins, CD11b/CD18, is also recognized as a major marker of mouse NK-cell maturation, but its function on NK cells has been largely ignored. Using N-ethyl-N-nitrosourea (ENU) mutagenesis, we generated a mouse carrying an A → T transverse mutation in the Itgb2 gene, resulting in a mutation that prevented the cell-surface expression of CD18 and its associated CD11a, CD11b, and CD11c proteins. We show that β2 integrin–deficient NK cells have a hyporesponsive phenotype in vitro, and present an alteration of their in vivo developmental program characterized by a selective accumulation of c-kit+ cells. NK-cell missing-self recognition was partially altered in vivo, whereas the early immune response to mouse cytomegalovirus (MCMV) infection occurred normally in CD18-deficient mice. Therefore, β2 integrins are required for optimal NK-cell maturation, but this deficiency is partial and can be bypassed during MCMV infection, highlighting the robustness of antiviral protective responses.


Sign in / Sign up

Export Citation Format

Share Document