scholarly journals PDGF-D−PDGFRβ signaling enhances IL-15–mediated human natural killer cell survival

2022 ◽  
Vol 119 (3) ◽  
pp. e2114134119
Author(s):  
Shoubao Ma ◽  
Tingting Tang ◽  
Xiaojin Wu ◽  
Anthony G. Mansour ◽  
Ting Lu ◽  
...  

The axis of platelet-derived growth factor (PDGF) and PDGF receptor-beta (PDGFRβ) plays prominent roles in cell growth and motility. In addition, PDGF-D enhances human natural killer (NK) cell effector functions when binding to the NKp44 receptor. Here, we report an additional but previously unknown role of PDGF-D, whereby it mediates interleukin-15 (IL-15)–induced human NK cell survival but not effector functions via its binding to PDGFRβ but independent of its binding to NKp44. Resting NK cells express no PDGFRβ and only a low level of PDGF-D, but both are significantly up-regulated by IL-15, via the nuclear factor κB signaling pathway, to promote cell survival in an autocrine manner. Both ectopic and IL-15–induced expression of PDGFRβ improves NK cell survival in response to treatment with PDGF-D. Our results suggest that the PDGF-D−PDGFRβ signaling pathway is a mechanism by which IL-15 selectively regulates the survival of human NK cells without modulating their effector functions.

Cancers ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 2 ◽  
Author(s):  
Marisa Market ◽  
Katherine Baxter ◽  
Leonard Angka ◽  
Michael Kennedy ◽  
Rebecca Auer

Natural Killer (NK) cells are granular lymphocytes of the innate immune system that are able to recognize and kill tumor cells without undergoing clonal selection. Discovered over 40 years ago, they have since been recognized to possess both cytotoxic and cytokine-producing effector functions. Following trauma, NK cells are suppressed and their effector functions are impaired. This is especially important for cancer patients undergoing the removal of solid tumors, as surgery has shown to contribute to the development of metastasis and cancer recurrence postoperatively. We have recently shown that NK cells are critical mediators in the formation of metastasis after surgery. While research into the mechanism(s) responsible for NK cell dysfunction is ongoing, knowledge of these mechanisms will pave the way for perioperative therapeutics with the potential to improve cancer outcomes by reversing NK cell dysfunction. This review will discuss mechanisms of suppression in the postoperative environment, including hypercoagulability, suppressive soluble factors, the expansion of suppressive cell populations, and how this affects NK cell biology, including modulation of cell surface receptors, the potential for anergy, and immunosuppressive NK cell functions. This review will also outline potential immunotherapies to reverse postoperative NK dysfunction, with the goal of preventing surgery-induced metastasis.


Blood ◽  
1984 ◽  
Vol 63 (2) ◽  
pp. 260-269 ◽  
Author(s):  
KF Mangan ◽  
ME Hartnett ◽  
SA Matis ◽  
A Winkelstein ◽  
T Abo

Abstract To determine the role of natural killer (NK) cells in the regulation of human erythropoiesis, we studied the effects of NK-enriched cell populations on the in vitro proliferation of erythroid stem cells at three different levels of maturation (day 14 blood BFU-E, day 5–6 marrow CFU-E, and day 10–12 marrow BFU-E). NK cells were enriched from blood by Percoll density gradient centrifugation and by fluorescence- activated cell sorting (FACS), using the human natural killer cell monoclonal antibody, HNK-1. The isolated enriched fractions were cocultured with autologous nonadherent marrow cells or blood null cells and erythropoietin in a methylcellulose erythroid culture system. Cells from low-density Percoll fractions (NK-enriched cells) were predominantly large granular lymphocytes with cytotoxic activity against K562 targets 6–10-fold greater than cells obtained from high- density Percoll fractions (NK-depleted cells). In coculture with marrow nonadherent cells (NA) at NK:NA ratios of 2:1, NK-enriched cells suppressed day 5–6 CFU-E to 62% (p less than 0.025) of controls, whereas NK-depleted cells slightly augmented CFU-E to 130% of controls (p greater than 0.05). In contrast, no suppression of day 10–12 marrow BFU-E was observed employing NK-enriched cells. The NK CFU-E suppressor effects were abolished by complement-mediated lysis of NK-enriched cells with the natural killer cell antibody, HNK-1. Highly purified HNK- 1+ cells separated by FACS suppressed marrow CFU-E to 34% (p less than 0.025) and marrow BFU-E to 41% (p less than 0.025) of controls. HNK- cells had no significant effect on either BFU-E or CFU-E growth. NK- enriched cells were poor stimulators of day 14 blood BFU-E in comparison to equal numbers of NK-depleted cells or T cells isolated by E-rosetting (p less than 0.01). Interferon boosting of NK-enriched cells abolished their suboptimal burst-promoting effects and augmented their CFU-E suppressor effects. These studies provide evidence for a potential regulatory role of NK cells in erythropoiesis. The NK suppressor effect is maximal at the level of the mature erythroid stem cell CFU-E. These findings may explain some hypoproliferative anemias that develop in certain NK cell-activated states.


Blood ◽  
2009 ◽  
Vol 113 (11) ◽  
pp. 2470-2477 ◽  
Author(s):  
Il-Kyoo Park ◽  
Chiara Giovenzana ◽  
Tiffany L. Hughes ◽  
Jianhua Yu ◽  
Rossana Trotta ◽  
...  

Interleukin-15 (IL-15) is essential for natural killer (NK) cell differentiation. In this study, we assessed whether the receptor tyrosine kinase Axl and its ligand, Gas6, are involved in IL-15–mediated human NK differentiation from CD34+ hematopoietic progenitor cells (HPCs). Blocking the Axl-Gas6 interaction with a soluble Axl fusion protein (Axl-Fc) or the vitamin K inhibitor warfarin significantly diminished the absolute number and percentage of CD3−CD56+ NK cells derived from human CD34+ HPCs cultured in the presence of IL-15, probably resulting in part from reduced phosphorylation of STAT5. In addition, CD3−CD56+ NK cells derived from culture of CD34+ HPCs with IL-15 and Axl-Fc had a significantly diminished capacity to express interferon-γ or its master regulator, T-BET. Culture of CD34+ HPCs in the presence of c-Kit ligand and Axl-Fc resulted in a significant decrease in the frequency of NK precursor cells responding to IL-15, probably the result of reduced c-Kit phosphorylation. Collectively, our data suggest that the Axl/Gas6 pathway contributes to normal human NK-cell development, at least in part via its regulatory effects on both the IL-15 and c-Kit signaling pathways in CD34+ HPCs, and to functional NK-cell maturation via an effect on the master regulatory transcription factor T-BET.


1990 ◽  
Vol 272 (2) ◽  
pp. 327-331 ◽  
Author(s):  
M M Whalen ◽  
A D Bankhurst

Membranes from highly purified natural killer (NK) cells were ADP-ribosylated by treatment with cholera toxin (CTX). CTX resulted in a single band of specific 32P incorporation at Mr 43,600. CTX treatment of intact NK cells caused a 9-fold increase in cyclic AMP (cAMP) concentrations. Pretreatment of NK cells with CTX diminished their ability to lyse K562 tumour cells by up to 79%. Forskolin treatment elevated NK cell cAMP levels 8-fold and decreased lysis of K562 cells by up to 45%. Adrenaline and isoprenaline (isoproterenol) both inhibited lysis of K562 cells by approx. 35% and elevated cAMP by at least 2.5-fold, and their inhibition of lysis was reversed by propranolol. These data suggest that the stimulatory guanine-nucleotide-binding protein GS coupled to beta-adrenergic receptors is involved in transducing signals which inhibit NK cell lysis of tumour cells. CTX and forskolin also diminish the ability of NK cells to bind K562 cells (binding is necessary for lysis). This suggests that the NK-cell receptor(s) for the tumour cell may be altered as a consequence of cAMP-mediated events or by activation of GS.


2020 ◽  
Author(s):  
Ni Zeng ◽  
Maud Theresine ◽  
Christophe Capelle ◽  
Neha Patil ◽  
Cécile Masquelier ◽  
...  

AbstractThe education or licensing process is essentially required for the proper anti-tumor function of natural killer (NK) cells. Although several models for education have been proposed, the genetic factors regulating these processes still remain largely elusive. Here we show that FAM13A (family with sequence similarity 13, member A), strongly linked to the risk of prominent death-causing lung diseases, i.e., lung cancer and chronic obstructive pulmonary disease, critically modulated NK cell maturation and effector functions. Fam13a depletion promoted NK cell maturation, KLRG1 (killer cell lectin-like receptor G1) expression in NK cells and NK terminal differentiation in homeostatic mice. NK cells from Fam13a-deficient mice had impaired IFN-γ production and degranulation. Strikingly, the number of lung metastases induced by B16F10 melanoma cells was increased in Fam13a-deficient mice. Collectively, our data reveal a pivotal role of FAM13A in slowing down NK maturation, but promoting NK cell effector functions and immune protection against tumor metastasis.


Author(s):  
Alireza Mardomi ◽  
Hadi Hossein-Nataj ◽  
Narjes Jafari ◽  
Nabiallah Mohammadi ◽  
Saeid Abediankenari

Stromal cell-derived factor-1 alpha (SDF-1α) has been shown to be up-regulated in a variety of malignancies. So that, its expression is associated with poor prognosis and invasiveness. Natural killer (NK) cells are important effector cells against virus-infected and transformed cells. Especially they play a key role in tumor immune surveillance. Whereas it was not well understood whether SDF-1α modulates anti-tumor immune response or not, the purpose of the present study was to investigate the effect of SDF-1α on the cytotoxic properties of peripheral blood NK cells. Human peripheral blood NK cells were freshly isolated using MACSxpess system and cultured in the presence or absence of recombinant human SDF-1α or SDF-1α plus CXCR4 antagonist, AMD3100. CD107a degranulation assay was conducted through the co-culture of NK cells with K562 cells. The percentage of CD107a positive cells was assessed by flowcytometry. Effect of SDF-1α was also examined on the mRNA levels of NKG2A and NKG2D as indicator examples of NK cell inhibitory and activating receptors, respectively. SDF-1α significantly decreased the degranulation activity of NK cells (p=0.04). The mRNA content of NKG2D was down-regulated under the influence of SDF-1α (p=0.03). Moreover, AMD3100 exhibited a trend in recovering the NKG2D mRNA level to its un-treated state (p=0.05).  The present study reveals that SDF-1α has a negative impact on NK cell activity and might is involved in tumor immune-suppression. Thus, it can be concluded that microenvironment manipulations targeting SDF-1α may reinforce current cancer therapies by disturbing one of the immune-suppressive axes in the cancerous milieu. 


2020 ◽  
Author(s):  
Everardo Hegewisch Solloa ◽  
Seungmae Seo ◽  
Bethany L. Mundy-Bosse ◽  
Anjali Mishra ◽  
Erik Waldman ◽  
...  

Natural killer (NK) cells are innate immune cells that reside within tissue and circulate in peripheral blood. As such, they interact with a variety of complex microenvironments, yet how NK cells engage with these varied microenvironments is not well documented. The integrin adhesome represents a molecular network of defined and predicted integrin-mediated signaling interactions. Here, we define the integrin adhesome expression profile of NK cells from tonsil, peripheral blood and those derived from hematopoietic precursors through stromal cell coculture systems. We report that the site of cell isolation and NK cell developmental stage dictate differences in expression of adhesome associated genes and proteins. Furthermore, we define differences in cortical actin content associated with differential expression of actin regulating proteins, suggesting that differences in adhesome expression are associated with differences in cortical actin homeostasis. Together, these data provide new understanding into the diversity of human NK cell populations and how they engage with their microenvironment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Baige Yao ◽  
Qinglan Yang ◽  
Yao Yang ◽  
Yana Li ◽  
Hongyan Peng ◽  
...  

Natural killer (NK) cells are a potent weapon against tumor and viral infection. Finding active compounds with the capacity of enhancing NK cell effector functions will be effective to develop new anti-cancer drugs. In this study, we initially screened 287 commercially available active compounds by co-culturing with peripheral blood mononuclear cells (PBMCs). We found that five compounds, namely, Daphnetin, MK-8617, LW6, JIB-04, and IOX1, increased the IFN-γ+ NK cell ratio in the presence of IL-12. Further studies using purified human primary NK cells revealed that Daphnetin directly promoted NK cell IFN-γ production in the presence of IL-12 but not IL-15, while the other four compounds acted on NK cells indirectly. Daphnetin also improved the direct cytotoxicity of NK cells against tumor cells in the presence of IL-12. Through RNA-sequencing, we found that PI3K-Akt-mTOR signaling acted as a central pathway in Daphnetin-mediated NK cell activation in the presence of IL-12. This was further confirmed by the finding that both inhibitors of PI3K-Akt and its main downstream signaling mTOR, LY294002, and rapamycin, respectively, can reverse the increase of IFN-γ production and cytotoxicity in NK cells promoted by Daphnetin. Collectively, we identify a natural product, Daphnetin, with the capacity of promoting human NK cell activation via PI3K-Akt-mTOR signaling in the presence of IL-12. Our current study opens up a new potential application for Daphnetin as a complementary immunomodulator for cancer treatments.


Blood ◽  
2012 ◽  
Vol 119 (16) ◽  
pp. 3734-3743 ◽  
Author(s):  
Lishomwa C. Ndhlovu ◽  
Sandra Lopez-Vergès ◽  
Jason D. Barbour ◽  
R. Brad Jones ◽  
Aashish R. Jha ◽  
...  

Abstract Natural killer (NK) cells are innate lymphocytes that play an important role against viral infections and cancer. This effect is achieved through a complex mosaic of inhibitory and activating receptors expressed by NK cells that ultimately determine the magnitude of the NK-cell response. The T-cell immunoglobulin– and mucin domain–containing (Tim)–3 receptor was initially identified as a T-helper 1–specific type I membrane protein involved in regulating T-cell responses. Human NK cells transcribe the highest amounts of Tim-3 among lymphocytes. Tim-3 protein is expressed on essentially all mature CD56dimCD16+ NK cells and is expressed heterogeneously in the immature CD56brightCD16– NK-cell subset in blood from healthy adults and in cord blood. Tim-3 expression was induced on CD56brightCD16− NK cells after stimulation with IL-15 or IL-12 and IL-18 in vitro, suggesting that Tim-3 is a maturation marker on NK cells. Whereas Tim-3 has been used to identify dysfunctional T cells, NK cells expressing high amounts of Tim-3 are fully responsive with respect to cytokine production and cytotoxicity. However, when Tim-3 was cross-linked with antibodies it suppressed NK cell–mediated cytotoxicity. These findings suggest that NK-cell responses may be negatively regulated when NK cells encounter target cells expressing cognate ligands of Tim-3.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3746-3746
Author(s):  
Tiffany L Hughes ◽  
Michael Brian Becknell ◽  
Aharon Freud ◽  
Susan E Schmidt ◽  
Jianhua Yu ◽  
...  

Abstract Developmental intermediates of human natural killer (NK) cells are found within secondary lymphoid tissue (SLT), and five distinct stages of these intermediates have been identified. While it is well documented that developing NK cells are reliant on interleukin (IL)-15 as a survival factor, it is likely that additional cytokines and growth factors are required for complete NK cell differentiation. Microarray transcriptional profiling of purified stage 1–4 cells from human tonsil and stage 4 and 5 cells from peripheral blood (PB) identified a developmental window of interleukin-1 receptor 1 (IL-1R1) messenger RNA (mRNA) expression restricted to stages 2 and 3. We confirmed this finding by quantitative RT-PCR, and analysis of IL-1R1 surface protein expression revealed that, on average, 81% of stage 3 immature NK cells are IL-1R1(+), whereas the majority of cells from stages 1, 2, and 4 are IL-1R1(−). When cultured in vitro with IL-1β, a physiologic ligand for IL-1R1, cells from all four stages died within 48 hours, consistent with an absolute requirement for IL-15 as a survival factor. However, the combination of IL-1β and IL-15 led to a significant and reproducible 4.64±−0.68–fold increase in stage 3 cell number over that seen with IL-15 alone (p < 0.0005). This phenomenon was completely restricted to stage 3 immature NK cells, and is attributed to increased proliferation. The effects of IL-1β were abrogated by a molar excess of IL-1 receptor antagonist (IL-1RA), a physiologic competitor for IL-1R1 binding. Collectively, our data indicate that IL-1R1 expression fluctuates dramatically during NK cell development, and that unique responses of IL-1R1(+) stage 3 cells to IL-1β and IL-15 govern the expansion of these immature NK cells. Our findings support a model in which IL-1β promotes stage 3 proliferation and survival in vivo, driving stage 3 cells to be the most prevalent NK cell intermediates within SLT.


Sign in / Sign up

Export Citation Format

Share Document