scholarly journals Host infection by the grass-symbiotic fungus Epichloë festucae requires catalytically active H3K9 and H3K36 methyltransferases

2020 ◽  
Author(s):  
Yonathan Lukito ◽  
Kate Lee ◽  
Nazanin Noorifar ◽  
Kimberly A. Green ◽  
David J. Winter ◽  
...  

AbstractRecent studies have identified key genes in Epichloë festucae that control the symbiotic interaction of this filamentous fungus with its grass host. Here we report on the identification of specific fungal genes that determine its ability to infect and colonize the host. Deletion of setB, which encodes a homolog of the H3K36 histone methyltransferase Set2/KMT3, specifically reduced histone H3K36 trimethylation and led to severe defects in colony growth and hyphal development. The E. festucae ΔclrD mutant, which lacks the gene encoding the homolog of the H3K9 methyltransferase KMT1, displays similar developmental defects. Both mutants are completely defective in their ability to infect the host grass, and mutational studies of key residues in the catalytic SET domains from these proteins show that these phenotypes are dependent on the methyltransferase activities of SetB and ClrD. A comparison of the differences in the host transcriptome between seedlings inoculated with wild-type versus mutants suggests that the inability of these mutants to infect the host was not due to an aberrant host defense response. Co-inoculation of either ΔsetB or ΔclrD with the wild-type strain enables these mutants to colonize the host. However, successful colonization by the mutants resulted in death or stunting of the host plant. Transcriptome analysis at the early infection stage identified four fungal candidate genes, three of which encode small-secreted proteins, that are differentially regulated in these mutants compared to wild-type. Deletion of crbA, which encodes a putative carbohydrate binding protein, resulted in significantly reduced host infection rates by E. festucae.Author SummaryThe filamentous fungus Epichloë festucae is an endophyte that forms highly regulated symbiotic interactions with the perennial ryegrass. Proper maintenance of such interactions is known to involve several signalling pathways, but much less is understood about the infection capability of this fungus in the host. In this study, we uncovered two epigenetic marks and their respective histone methyltransferases that are required for E. festucae to infect perennial ryegrass. Null mutants of the histone H3 lysine 9 and lysine 36 methyltransferases are completely defective in colonizing the host intercellular space, and these defects are dependent on the methyltransferase activities of these enzymes. Importantly, we observed no evidence for increased host defense response to these mutants that can account for their non-infection. Rather, these infection defects can be rescued by the wild-type strain in co-inoculation experiments, suggesting that failure of the mutants to infect is due to altered expression of genes encoding infection factors that are under the control of the above epigenetic marks that can be supplied by the wild-type strain. Among genes differentially expressed in the mutants at the early infection stage is a putative small-secreted protein with a carbohydrate binding function, which deletion in E. festucae severely reduced infection efficiency.

Plant Disease ◽  
2009 ◽  
Vol 93 (10) ◽  
pp. 1044-1049 ◽  
Author(s):  
B. Ma ◽  
W. Uddin

Development of azoxystrobin resistance in Magnaporthe oryzae from perennial ryegrass has been reported in certain locations in the United States, and possible development of resistance in additional areas is a major concern in the golf course industry. The study was undertaken to evaluate the relative fitness and competitive ability of a field-collected azoxystrobin-resistant G143A mutant by comparing it with a wild-type strain using detached perennial ryegrass blades. A fitness comparison experiment indicated that the disease severity of the wild-type strain was significantly higher than that of the mutant; however, the mutant produced greater secondary inoculum. When inoculated with three mixed populations of resistant and wild-type strains at different ratios, the production of conidia by the wild-type strain increased and that of the mutant decreased after infection occurred in all three populations tested. In an experiment on the effect of various fungicides on the population initially containing 5% of the mutant, preventive application of azoxystrobin allowed 5% of the mutant to dominate the population after the infection. However, other non-quinone outside inhibitor fungicides and mixtures of azoxystrobin with contact fungicides eliminated the entire mutant. This study demonstrates that the wild-type strain of M. oryzae has a competitive advantage over the mutant within the environment tested. Mixtures and alternations of fungicides with different modes of actions may prevent rapid build-up of resistance in the gray leaf spot pathosystem.


Genetics ◽  
1996 ◽  
Vol 142 (2) ◽  
pp. 383-391 ◽  
Author(s):  
Yasumasa Tsukamoto ◽  
Jun-ichi Kato ◽  
Hideo Ikeda

Abstract To examine the mechanism of illegitimate recombination in Saccharomyces cerevisiae, we have developed a plasmid system for quantitative analysis of deletion formation. A can1 cyh2 cell carrying two negative selection markers, the CAN1 and CYH2 genes, on a YCp plasmid is sensitive to canavanine and cycloheximide, but the cell becomes resistant to both drugs when the plasmid has a deletion over the CAN1 and CYH2 genes. Structural analysis of the recombinant plasmids obtained from the resistant cells showed that the plasmids had deletions at various sites of the CAN1-CYH2 region and there were only short regions of homology (1-5 bp) at the recombination junctions. The results indicated that the deletion detected in this system were formed by illegitimate recombination. Study on the effect of several rad mutations showed that the recombination rate was reduced by 30-, 10-, 10-, and 10-fold in the rad52, rad50, mre11, and xrs2 mutants, respectively, while in the rud51, 54, 55, and 57 mutants, the rate was comparable to that in the wild-type strain. The rad52 mutation did not affect length of homology at junction sites of illegitimate recombination.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nayeong Kim ◽  
Hyo Jeong Kim ◽  
Man Hwan Oh ◽  
Se Yeon Kim ◽  
Mi Hyun Kim ◽  
...  

Abstract Background Zinc uptake-regulator (Zur)-regulated lipoprotein A (ZrlA) plays a role in bacterial fitness and overcoming antimicrobial exposure in Acinetobacter baumannii. This study further characterized the zrlA gene and its encoded protein and investigated the roles of the zrlA gene in bacterial morphology, antimicrobial susceptibility, and production of outer membrane vesicles (OMVs) in A. baumannii ATCC 17978. Results In silico and polymerase chain reaction analyses showed that the zrlA gene was conserved among A. baumannii strains with 97–100% sequence homology. Recombinant ZrlA protein exhibited a specific enzymatic activity of D-alanine-D-alanine carboxypeptidase. Wild-type A. baumannii exhibited more morphological heterogeneity than a ΔzrlA mutant strain during stationary phase. The ΔzrlA mutant strain was more susceptible to gentamicin than the wild-type strain. Sizes and protein profiles of OMVs were similar between the wild-type and ΔzrlA mutant strains, but the ΔzrlA mutant strain produced 9.7 times more OMV particles than the wild-type strain. OMVs from the ΔzrlA mutant were more cytotoxic in cultured epithelial cells than OMVs from the wild-type strain. Conclusions The present study demonstrated that A. baumannii ZrlA contributes to bacterial morphogenesis and antimicrobial resistance, but its deletion increases OMV production and OMV-mediated host cell cytotoxicity.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wei Liu ◽  
Xue Bai ◽  
Yan Li ◽  
Haikun Zhang ◽  
Xiaoke Hu

Abstract Background A wide variety of bacterial adaptative responses to environmental conditions are mediated by signal transduction pathways. Two-component signal transduction systems are one of the predominant means used by bacteria to sense the signals of the host plant and adjust their interaction behaviour. A total of seven open reading frames have been identified as putative two-component response regulators in the gram-negative nitrogen-fixing bacteria Azorhizobium caulinodans ORS571. However, the biological functions of these response regulators in the symbiotic interactions between A. caulinodans ORS571 and the host plant Sesbania rostrata have not been elucidated to date. Results In this study, we identified and investigated a two-component response regulator, AcfR, with a phosphorylatable N-terminal REC (receiver) domain and a C-terminal HTH (helix-turn-helix) LuxR DNA-binding domain in A. caulinodans ORS571. Phylogenetic analysis showed that AcfR possessed close evolutionary relationships with NarL/FixJ family regulators. In addition, six histidine kinases containing HATPase_c and HisKA domains were predicted to interact with AcfR. Furthermore, the biological function of AcfR in free-living and symbiotic conditions was elucidated by comparing the wild-type strain and the ΔacfR mutant strain. In the free-living state, the cell motility behaviour and exopolysaccharide production of the ΔacfR mutant were significantly reduced compared to those of the wild-type strain. In the symbiotic state, the ΔacfR mutant showed a competitive nodule defect on the stems and roots of the host plant, suggesting that AcfR can provide A. caulinodans with an effective competitive ability for symbiotic nodulation. Conclusions Our results showed that AcfR, as a response regulator, regulates numerous phenotypes of A. caulinodans under the free-living conditions and in symbiosis with the host plant. The results of this study help to elucidate the involvement of a REC + HTH_LuxR two-component response regulator in the Rhizobium-host plant interaction.


2021 ◽  
Vol 9 (4) ◽  
pp. 676
Author(s):  
Ting-Yu Liu ◽  
Sheng-Hui Tsai ◽  
Jenn-Wei Chen ◽  
Yu-Ching Wang ◽  
Shiau-Ting Hu ◽  
...  

Mycobacterium abscessus is an opportunistic pathogen causing human diseases, especially in immunocompromised patients. M. abscessus strains with a rough morphotype are more virulent than those with a smooth morphotype. Morphotype switch may occur during a clinical infection. To investigate the genes involved in colony morphotype switching, we performed transposon mutagenesis in a rough clinical strain of M. abscessus. A morphotype switching mutant (smooth) named mab_3083c::Tn was obtained. This mutant was found to have a lower aggregative ability and a higher sliding motility than the wild type strain. However, its glycopeptidolipid (GPL) content remained the same as those of the wild type. Complementation of the mutant with a functional mab_3083c gene reverted its morphotype back to rough, indicating that mab_3083c is associated with colony morphology of M. abscessus. Bioinformatic analyses showed that mab_3083c has a 75.4% identity in amino acid sequence with the well-characterized ribonuclease J (RNase J) of M. smegmatis (RNase JMsmeg). Complementation of the mutant with the RNase J gene of M. smegmatis also switched its colony morphology from smooth back to rough. These results suggest that Mab_3083c is a homologue of RNase J and involved in regulating M. abscessus colony morphotype switching.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ruiqi Wang ◽  
Kun Li ◽  
Jifang Yu ◽  
Jiaoyu Deng ◽  
Yaokai Chen

AbstractPrevious studies showed that mutation of folC caused decreased expression of the dihydropteroate synthase encoding gene folP2 in Mycobacterium tuberculosis (M. tuberculosis). We speculated that mutation of folC in M. tuberculosis might affect the susceptibility to sulfamethoxazole (SMX). To prove this, 53 clinical isolates with folC mutations were selected and two folC mutants (I43A, I43T) were constructed based on M. tuberculosis H37Ra. The results showed that 42 of the 53 clinical isolates (79.2%) and the two lab-constructed folC mutants were more sensitive to SMX. To probe the mechanism by which folC mutations make M. tuberculosis more sensitive to SMX, folP2 was deleted in H37Ra, and expression levels of folP2 were compared between H37Ra and the two folC mutants. Although deletion of folP2 resulted in increased susceptibility to SMX, no difference in folP2 expression was observed. Furthermore, production levels of para-aminobenzoic acid (pABA) were compared between the folC mutants and the wild-type strain, and results showed that folC mutation resulted in decreased production of pABA. Taken together, we show that folC mutation leads to decreased production of pABA in M. tuberculosis and thus affects its susceptibility to SMX, which broadens our understanding of mechanisms of susceptibilities to antifolates in this bacterium.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
José Francisco Cruz-Pérez ◽  
Roxana Lara-Oueilhe ◽  
Cynthia Marcos-Jiménez ◽  
Ricardo Cuatlayotl-Olarte ◽  
María Luisa Xiqui-Vázquez ◽  
...  

AbstractThe plant growth-promoting bacterium Azospirillum brasilense contains several genes encoding proteins involved in the biosynthesis and degradation of the second messenger cyclic-di-GMP, which may control key bacterial functions, such as biofilm formation and motility. Here, we analysed the function and expression of the cdgD gene, encoding a multidomain protein that includes GGDEF-EAL domains and CHASE and PAS domains. An insertional cdgD gene mutant was constructed, and analysis of biofilm and extracellular polymeric substance production, as well as the motility phenotype indicated that cdgD encoded a functional diguanylate protein. These results were correlated with a reduced overall cellular concentration of cyclic-di-GMP in the mutant over 48 h compared with that observed in the wild-type strain, which was recovered in the complemented strain. In addition, cdgD gene expression was measured in cells growing under planktonic or biofilm conditions, and differential expression was observed when KNO3 or NH4Cl was added to the minimal medium as a nitrogen source. The transcriptional fusion of the cdgD promoter with the gene encoding the autofluorescent mCherry protein indicated that the cdgD gene was expressed both under abiotic conditions and in association with wheat roots. Reduced colonization of wheat roots was observed for the mutant compared with the wild-type strain grown in the same soil conditions. The Azospirillum-plant association begins with the motility of the bacterium towards the plant rhizosphere followed by the adsorption and adherence of these bacteria to plant roots. Therefore, it is important to study the genes that contribute to this initial interaction of the bacterium with its host plant.


Genetics ◽  
1997 ◽  
Vol 147 (2) ◽  
pp. 589-596 ◽  
Author(s):  
Theo A Schuurs ◽  
Eveline A M Schaeffer ◽  
Joseph G H Wessels

After introduction of extra copies of the SC3 hydrophobin gene into a wild-type strain of Schizophyllum commune, gene silencing was observed acting on both endogenous and introduced SC3 genes in primary vegetative transformants. Nuclear run-on experiments indicated that silencing acted at the transcriptional level. Southern analysis revealed that cytosine methylation of genomic DNA occurred. Moreover, SC3 silencing was suppressed by exposure to 5-azacytidine during growth. After growth of SC3-suppressed colonies from homogenized mycelium or from colonies stored at 4°, SC3 transcription was restored. However, after prolonged growth SC3 silencing was again observed. Introduction of a promoterless SC3 fragment into wild type gave less SC3 silencing.


2015 ◽  
Vol 8 (6) ◽  
Author(s):  
Estibaliz Sansinenea ◽  
Francisco Salazar ◽  
Melanie Ramirez ◽  
Aurelio Ortiz

2019 ◽  
Vol 20 (22) ◽  
pp. 5737 ◽  
Author(s):  
Miriam González-Villanueva ◽  
Hemanshi Galaiya ◽  
Paul Staniland ◽  
Jessica Staniland ◽  
Ian Savill ◽  
...  

Cupriavidus necator H16 is a non-pathogenic Gram-negative betaproteobacterium that can utilize a broad range of renewable heterotrophic resources to produce chemicals ranging from polyhydroxybutyrate (biopolymer) to alcohols, alkanes, and alkenes. However, C. necator H16 utilizes carbon sources to different efficiency, for example its growth in glycerol is 11.4 times slower than a favorable substrate like gluconate. This work used adaptive laboratory evolution to enhance the glycerol assimilation in C. necator H16 and identified a variant (v6C6) that can co-utilize gluconate and glycerol. The v6C6 variant has a specific growth rate in glycerol 9.5 times faster than the wild-type strain and grows faster in mixed gluconate–glycerol carbon sources compared to gluconate alone. It also accumulated more PHB when cultivated in glycerol medium compared to gluconate medium while the inverse is true for the wild-type strain. Through genome sequencing and expression studies, glycerol kinase was identified as the key enzyme for its improved glycerol utilization. The superior performance of v6C6 in assimilating pure glycerol was extended to crude glycerol (sweetwater) from an industrial fat splitting process. These results highlight the robustness of adaptive laboratory evolution for strain engineering and the versatility and potential of C. necator H16 for industrial waste glycerol valorization.


Sign in / Sign up

Export Citation Format

Share Document