scholarly journals NEBULA: a fast negative binomial mixed model for differential expression and co-expression analyses of large-scale multi-subject single-cell data

2020 ◽  
Author(s):  
Liang He ◽  
Alexander M. Kulminski

AbstractThe growing availability of large-scale single-cell data revolutionizes our understanding of biological mechanisms at a finer resolution. In differential expression and co-expression analyses of multi-subject single-cell data, it is important to take into account both subject-level and cell-level overdispersions through negative binomial mixed models (NBMMs). However, the application of NBMMs to large-scale single-cell data is computationally demanding. In this work, we propose an efficient NEgative Binomial mixed model Using a Large-sample Approximation (NEBULA)), which analytically solves the high-dimensional integral in the marginal likelihood instead of using the Laplace approximation. Our benchmarks show that NEBULA dramatically reduces the running time by orders of magnitude compared to existing tools. We showed that NEBULA controlled false positives in identifying marker genes, while a simple negative binomial model produced spurious associations. Leveraging NEBULA, we decomposed between-subject and within-subject overdispersions of an snRNA-seq data set in the frontal cortex comprising ∼80,000 cells from a cohort of 48 individuals for Alzheimer’s diseases (AD). We observed that subpopulations and known subject-level covariates contributed substantially to the overdispersions. We carried out cell-type-specific transcriptome-wide within-subject co-expression analysis of APOE. The results revealed that APOE was most co-expressed with multiple AD-related genes, including CLU and CST3 in astrocytes, TREM2 and C1q genes in microglia, and ITM2B, an inhibitor of the amyloid-beta peptide aggregation, in both cell types. We found that the co-expression patterns were different in APOE2+ and APOE4+ cells in microglia, which suggest an isoform-dependent regulatory role in the immune system through the complement system in microglia. NEBULA opens up a new avenue for the broad application of NBMMs in the analysis of large-scale multi-subject single-cell data.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Liang He ◽  
Jose Davila-Velderrain ◽  
Tomokazu S. Sumida ◽  
David A. Hafler ◽  
Manolis Kellis ◽  
...  

AbstractThe increasing availability of single-cell data revolutionizes the understanding of biological mechanisms at cellular resolution. For differential expression analysis in multi-subject single-cell data, negative binomial mixed models account for both subject-level and cell-level overdispersions, but are computationally demanding. Here, we propose an efficient NEgative Binomial mixed model Using a Large-sample Approximation (NEBULA). The speed gain is achieved by analytically solving high-dimensional integrals instead of using the Laplace approximation. We demonstrate that NEBULA is orders of magnitude faster than existing tools and controls false-positive errors in marker gene identification and co-expression analysis. Using NEBULA in Alzheimer’s disease cohort data sets, we found that the cell-level expression of APOE correlated with that of other genetic risk factors (including CLU, CST3, TREM2, C1q, and ITM2B) in a cell-type-specific pattern and an isoform-dependent manner in microglia. NEBULA opens up a new avenue for the broad application of mixed models to large-scale multi-subject single-cell data.


2019 ◽  
Author(s):  
Mahmoud M Ibrahim ◽  
Rafael Kramann

ABSTRACTMarker genes identified in single cell experiments are expected to be highly specific to a certain cell type and highly expressed in that cell type. Detecting a gene by differential expression analysis does not necessarily satisfy those two conditions and is typically computationally expensive for large cell numbers.Here we present genesorteR, an R package that ranks features in single cell data in a manner consistent with the expected definition of marker genes in experimental biology research. We benchmark genesorteR using various data sets and show that it is distinctly more accurate in large single cell data sets compared to other methods. genesorteR is orders of magnitude faster than current implementations of differential expression analysis methods, can operate on data containing millions of cells and is applicable to both single cell RNA-Seq and single cell ATAC-Seq data.genesorteR is available at https://github.com/mahmoudibrahim/genesorteR.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anujit Sarkar ◽  
Melanie N. Kuehl ◽  
Amy C. Alman ◽  
Brant R. Burkhardt

AbstractSaliva has immense potential as a diagnostic fluid for identification and monitoring of several systemic diseases. Composition of the microbiome and inflammation has been associated and reflective of oral and overall health. In addition, the relative ease of collection of saliva further strengthens large-scale diagnostic purposes. However, the future clinical utility of saliva cannot be fully determined without a detailed examination of daily fluctuations that may occur within the oral microbiome and inflammation due to circadian rhythm. In this study, we explored the association between the salivary microbiome and the concentration of IL-1β, IL-6 and IL-8 in the saliva of 12 healthy adults over a period of 24 h by studying the 16S rRNA gene followed by negative binomial mixed model regression analysis. To determine the periodicity and oscillation patterns of both the oral microbiome and inflammation (represented by the cytokine levels), two of the twelve subjects were studied for three consecutive days. Our results indicate that the Operational Taxonomic Units (OTUs) belonging to Prevotella, SR1 and Ruminococcaceae are significantly associated to IL-1β while Prevotella and Granulicatella were associated with IL-8. Our findings have also revealed a periodicity of both the oral microbiome (OTUs) and inflammation (cytokine levels) with identifiable patterns between IL-1β and Prevotella, and IL-6 with Prevotella, Neisseria and Porphyromonas. We believe that this study represents the first measure and demonstration of simultaneous periodic fluctuations of cytokine levels and specific populations of the oral microbiome.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Momoko Hamano ◽  
Seitaro Nomura ◽  
Midori Iida ◽  
Issei Komuro ◽  
Yoshihiro Yamanishi

AbstractHeart failure is a heterogeneous disease with multiple risk factors and various pathophysiological types, which makes it difficult to understand the molecular mechanisms involved. In this study, we proposed a trans-omics approach for predicting molecular pathological mechanisms of heart failure and identifying marker genes to distinguish heterogeneous phenotypes, by integrating multiple omics data including single-cell RNA-seq, ChIP-seq, and gene interactome data. We detected a significant increase in the expression level of natriuretic peptide A (Nppa), after stress loading with transverse aortic constriction (TAC), and showed that cardiomyocytes with high Nppa expression displayed specific gene expression patterns. Multiple NADH ubiquinone complex family, which are associated with the mitochondrial electron transport system, were negatively correlated with Nppa expression during the early stages of cardiac hypertrophy. Large-scale ChIP-seq data analysis showed that Nkx2-5 and Gtf2b were transcription factors characteristic of high-Nppa-expressing cardiomyocytes. Nppa expression levels may, therefore, represent a useful diagnostic marker for heart failure.


2019 ◽  
Author(s):  
Shobana V. Stassen ◽  
Dickson M. D. Siu ◽  
Kelvin C. M. Lee ◽  
Joshua W. K. Ho ◽  
Hayden K. H. So ◽  
...  

AbstractMotivationNew single-cell technologies continue to fuel the explosive growth in the scale of heterogeneous single-cell data. However, existing computational methods are inadequately scalable to large datasets and therefore cannot uncover the complex cellular heterogeneity.ResultsWe introduce a highly scalable graph-based clustering algorithm PARC - phenotyping by accelerated refined community-partitioning – for ultralarge-scale, high-dimensional single-cell data (> 1 million cells). Using large single cell mass cytometry, RNA-seq and imaging-based biophysical data, we demonstrate that PARC consistently outperforms state-of-the-art clustering algorithms without sub-sampling of cells, including Phenograph, FlowSOM, and Flock, in terms of both speed and ability to robustly detect rare cell populations. For example, PARC can cluster a single cell data set of 1.1M cells within 13 minutes, compared to >2 hours to the next fastest graph-clustering algorithm, Phenograph. Our work presents a scalable algorithm to cope with increasingly large-scale single-cell analysis.Availability and Implementationhttps://github.com/ShobiStassen/PARC


2018 ◽  
Author(s):  
Krishan Gupta ◽  
Manan Lalit ◽  
Aditya Biswas ◽  
Ujjwal Maulik ◽  
Sanghamitra Bandyopadhyay ◽  
...  

1AbstractSystematic delineation of complex biological systems is an ever-challenging and resource-intensive process. Single cell transcriptomics allows us to study cell-to-cell variability in complex tissues at an unprecedented resolution. Accurate modeling of gene expression plays a critical role in the statistical determination of tissue-specific gene expression patterns. In the past few years, considerable efforts have been made to identify appropriate parametric models for single cell expression data. The zero-inflated version of Poisson/Negative Binomial and Log-Normal distributions have emerged as the most popular alternatives due to their ability to accommodate high dropout rates, as commonly observed in single cell data. While the majority of the parametric approaches directly model expression estimates, we explore the potential of modeling expression-ranks, as robust surrogates for transcript abundance. Here we examined the performance of the Discrete Generalized Beta Distribution (DGBD) on real data and devised a Wald-type test for comparing gene expression across two phenotypically divergent groups of single cells. We performed a comprehensive assessment of the proposed method, to understand its advantages as compared to some of the existing best practice approaches. Besides striking a reasonable balance between Type 1 and Type 2 errors, we concluded that ROSeq, the proposed differential expression test is exceptionally robust to expression noise and scales rapidly with increasing sample size. For wider dissemination and adoption of the method, we created an R package called ROSeq, and made it available on the Bioconductor platform.


2021 ◽  
Vol 22 (S3) ◽  
Author(s):  
Yuanyuan Li ◽  
Ping Luo ◽  
Yi Lu ◽  
Fang-Xiang Wu

Abstract Background With the development of the technology of single-cell sequence, revealing homogeneity and heterogeneity between cells has become a new area of computational systems biology research. However, the clustering of cell types becomes more complex with the mutual penetration between different types of cells and the instability of gene expression. One way of overcoming this problem is to group similar, related single cells together by the means of various clustering analysis methods. Although some methods such as spectral clustering can do well in the identification of cell types, they only consider the similarities between cells and ignore the influence of dissimilarities on clustering results. This methodology may limit the performance of most of the conventional clustering algorithms for the identification of clusters, it needs to develop special methods for high-dimensional sparse categorical data. Results Inspired by the phenomenon that same type cells have similar gene expression patterns, but different types of cells evoke dissimilar gene expression patterns, we improve the existing spectral clustering method for clustering single-cell data that is based on both similarities and dissimilarities between cells. The method first measures the similarity/dissimilarity among cells, then constructs the incidence matrix by fusing similarity matrix with dissimilarity matrix, and, finally, uses the eigenvalues of the incidence matrix to perform dimensionality reduction and employs the K-means algorithm in the low dimensional space to achieve clustering. The proposed improved spectral clustering method is compared with the conventional spectral clustering method in recognizing cell types on several real single-cell RNA-seq datasets. Conclusions In summary, we show that adding intercellular dissimilarity can effectively improve accuracy and achieve robustness and that improved spectral clustering method outperforms the traditional spectral clustering method in grouping cells.


Author(s):  
Yixuan Qiu ◽  
Jiebiao Wang ◽  
Jing Lei ◽  
Kathryn Roeder

Abstract Motivation Marker genes, defined as genes that are expressed primarily in a single cell type, can be identified from the single cell transcriptome; however, such data are not always available for the many uses of marker genes, such as deconvolution of bulk tissue. Marker genes for a cell type, however, are highly correlated in bulk data, because their expression levels depend primarily on the proportion of that cell type in the samples. Therefore, when many tissue samples are analyzed, it is possible to identify these marker genes from the correlation pattern. Results To capitalize on this pattern, we develop a new algorithm to detect marker genes by combining published information about likely marker genes with bulk transcriptome data in the form of a semi-supervised algorithm. The algorithm then exploits the correlation structure of the bulk data to refine the published marker genes by adding or removing genes from the list. Availability and implementation We implement this method as an R package markerpen, hosted on CRAN (https://CRAN.R-project.org/package=markerpen). Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Author(s):  
Anna Danese ◽  
Maria L. Richter ◽  
David S. Fischer ◽  
Fabian J. Theis ◽  
Maria Colomé-Tatché

ABSTRACTEpigenetic single-cell measurements reveal a layer of regulatory information not accessible to single-cell transcriptomics, however single-cell-omics analysis tools mainly focus on gene expression data. To address this issue, we present epiScanpy, a computational framework for the analysis of single-cell DNA methylation and single-cell ATAC-seq data. EpiScanpy makes the many existing RNA-seq workflows from scanpy available to large-scale single-cell data from other -omics modalities. We introduce and compare multiple feature space constructions for epigenetic data and show the feasibility of common clustering, dimension reduction and trajectory learning techniques. We benchmark epiScanpy by interrogating different single-cell brain mouse atlases of DNA methylation, ATAC-seq and transcriptomics. We find that differentially methylated and differentially open markers between cell clusters enrich transcriptome-based cell type labels by orthogonal epigenetic information.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254194
Author(s):  
Hong-Tae Park ◽  
Woo Bin Park ◽  
Suji Kim ◽  
Jong-Sung Lim ◽  
Gyoungju Nah ◽  
...  

Mycobacterium avium subsp. paratuberculosis (MAP) is a causative agent of Johne’s disease, which is a chronic and debilitating disease in ruminants. MAP is also considered to be a possible cause of Crohn’s disease in humans. However, few studies have focused on the interactions between MAP and human macrophages to elucidate the pathogenesis of Crohn’s disease. We sought to determine the initial responses of human THP-1 cells against MAP infection using single-cell RNA-seq analysis. Clustering analysis showed that THP-1 cells were divided into seven different clusters in response to phorbol-12-myristate-13-acetate (PMA) treatment. The characteristics of each cluster were investigated by identifying cluster-specific marker genes. From the results, we found that classically differentiated cells express CD14, CD36, and TLR2, and that this cell type showed the most active responses against MAP infection. The responses included the expression of proinflammatory cytokines and chemokines such as CCL4, CCL3, IL1B, IL8, and CCL20. In addition, the Mreg cell type, a novel cell type differentiated from THP-1 cells, was discovered. Thus, it is suggested that different cell types arise even when the same cell line is treated under the same conditions. Overall, analyzing gene expression patterns via scRNA-seq classification allows a more detailed observation of the response to infection by each cell type.


Sign in / Sign up

Export Citation Format

Share Document