scholarly journals Single-cell data and correlation analysis support the independent double adder model in both Escherichia coli and Bacillus subtilis

2020 ◽  
Author(s):  
Guillaume Le Treut ◽  
Fangwei Si ◽  
Dongyang Li ◽  
Suckjoon Jun

AbstractThe reference point for cell-size control in the cell cycle is a fundamental biological question. We previously reported that we were unable to reproduce the conclusions of Witz et al.’s eLife paper (Witz, van Nimwegen, and Julou 2019) entitled, “Initiation of chromosome replication controls both division and replication cycles in E. coli through a double-adder mechanism”, despite extensive efforts. In this ‘replication double adder’ (RDA) model, both replication and division cycles are determined via replication initiation as the sole implementation point of size control. Witz et al. justified the RDA model using a type of correlation analysis (the “I-value analysis”) that they developed. By contrast, we previously showed that, in both Escherichia coli and Bacillus subtilis, replication initiation and cell division are determined by balanced biosynthesis of key cell cycle proteins (e.g., DnaA for initiation and FtsZ for cell division) and their accumulation to their respective threshold numbers, which Witz et al. coined the ‘independent double adder’ (IDA) model. The adder phenotype is a natural quantitative consequence of these mechanistic principles. In a recent bioRxiv response to our report, Witz and colleagues explicitly confirmed two important limitations of the I-value analysis: (1) it is only applicable to non-overlapping cell cycles, wherein E. coli is known to deviate from the adder principle, and (2) it is only applicable to select biological models and, for example, cannot evaluate the IDA model. These limitations of the I-value analysis were not explained in the original eLife paper and were overlooked during the review process. In this report, we show using data analysis, mathematical modeling, and experiments why the I-value analysis - in its current implementation - cannot compare different biological models. Furthermore, the RDA model is incompatible with the adder principle and is not broadly supported by experimental data. For completeness, we also provide a detailed point-by-point response to Witz et al.’s response (Witz, Julou, and van Nimwegen 2020) in the Supplemental Information.

2008 ◽  
Vol 190 (18) ◽  
pp. 6048-6059 ◽  
Author(s):  
Carine Robichon ◽  
Glenn F. King ◽  
Nathan W. Goehring ◽  
Jon Beckwith

ABSTRACT Bacterial cell division is mediated by a set of proteins that assemble to form a large multiprotein complex called the divisome. Recent studies in Bacillus subtilis and Escherichia coli indicate that cell division proteins are involved in multiple cooperative binding interactions, thus presenting a technical challenge to the analysis of these interactions. We report here the use of an E. coli artificial septal targeting system for examining the interactions between the B. subtilis cell division proteins DivIB, FtsL, DivIC, and PBP 2B. This technique involves the fusion of one of the proteins (the “bait”) to ZapA, an E. coli protein targeted to mid-cell, and the fusion of a second potentially interacting partner (the “prey”) to green fluorescent protein (GFP). A positive interaction between two test proteins in E. coli leads to septal localization of the GFP fusion construct, which can be detected by fluorescence microscopy. Using this system, we present evidence for two sets of strong protein-protein interactions between B. subtilis divisomal proteins in E. coli, namely, DivIC with FtsL and DivIB with PBP 2B, that are independent of other B. subtilis cell division proteins and that do not disturb the cytokinesis process in the host cell. Our studies based on the coexpression of three or four of these B. subtilis cell division proteins suggest that interactions among these four proteins are not strong enough to allow the formation of a stable four-protein complex in E. coli in contrast to previous suggestions. Finally, our results demonstrate that E. coli artificial septal targeting is an efficient and alternative approach for detecting and characterizing stable protein-protein interactions within multiprotein complexes from other microorganisms. A salient feature of our approach is that it probably only detects the strongest interactions, thus giving an indication of whether some interactions suggested by other techniques may either be considerably weaker or due to false positives.


2015 ◽  
Vol 184 ◽  
pp. 425-450 ◽  
Author(s):  
Jacek T. Mika ◽  
Aster Vanhecke ◽  
Peter Dedecker ◽  
Toon Swings ◽  
Jeroen Vangindertael ◽  
...  

Escherichia coli (E. coli) cells replicate their genome once per cell cycle to pass on genetic information to the daughter cells. The SeqA protein binds the origin of replication, oriC, after DNA replication initiation and sequesters it from new initiations in order to prevent overinitiation. Conventional fluorescence microscopy studies of SeqA localization in bacterial cells have shown that the protein is localized to discrete foci. In this study we have used photo-activated localization microscopy (PALM) to determine the localization of SeqA molecules, tagged with fluorescent proteins, with a localization precision of 20–30 nm with the aim to visualize the SeqA subcellular structures in more detail than previously possible. SeqA–PAmCherry was imaged in wild type E. coli, expressed from plasmid or genetically engineered into the bacterial genome, replacing the native seqA gene. Unsynchronized cells as well as cells with a synchronized cell cycle were imaged at various time points, in order to investigate the evolution of SeqA localization during the cell cycle. We found that SeqA indeed localized into discrete foci but these were not the only subcellular localizations of the protein. A significant amount of SeqA–PAmCherry molecules was localized outside the foci and in a fraction of cells we saw patterns indicating localization at the membrane. Using quantitative PALM, we counted protein copy numbers per cell, protein copy numbers per focus, the numbers of foci per cell and the sizes of the SeqA clusters. The data showed broad cell-to-cell variation and we did not observe a correlation between SeqA–PAmCherry protein numbers and the cell cycle under the experimental conditions of this study. The numbers of SeqA–PAmCherry molecules per focus as well as the foci sizes also showed broad distributions indicating that the foci are likely not characterized by a fixed number of molecules. We also imaged an E. coli strain devoid of the dam methylase (Δdam) and observed that SeqA–PAmCherry no longer formed foci, and was dispersed throughout the cell and localized to the plasma membrane more readily. We discuss our results in the context of the limitations of the technique.


1998 ◽  
Vol 180 (5) ◽  
pp. 1296-1304 ◽  
Author(s):  
Xuan-chuan Yu ◽  
Anthony H. Tran ◽  
Qin Sun ◽  
William Margolin

ABSTRACT Escherichia coli cell division protein FtsK is a homolog of Bacillus subtilis SpoIIIE and appears to act late in the septation process. To determine whether FtsK localizes to the septum, we fused three N-terminal segments of FtsK to green fluorescent protein (GFP) and expressed them in E. colicells. All three segments were sufficient to target GFP to the septum, suggesting that as little as the first 15% of the protein is a septum-targeting domain. Localized fluorescence was detectable only in cells containing a visible midcell constriction, suggesting that FtsK targeting normally occurs only at a late stage of septation. The largest two FtsK-GFP fusions were able at least partially to complement the ftsK44 mutation in trans, suggesting that the N- and C-terminal domains are functionally separable. However, overproduction of FtsK-GFP resulted in a late-septation phenotype similar to that of ftsK44, with fluorescent dots localized at the blocked septa, suggesting that high levels of the N-terminal domain may still localize but also inhibit FtsK activity. Interestingly, under these conditions fluorescence was also sometimes localized as bands at potential division sites, suggesting that FtsK-GFP is capable of targeting very early. In addition, FtsK-GFP localized to potential division sites in cephalexin-induced andftsI mutant filaments, further supporting the idea that FtsK-GFP can target early, perhaps by recognizing FtsZ directly. This hypothesis was supported by the failure of FtsK-GFP to localize inftsZ mutant filaments. In ftsK44 mutant filaments, FtsA and FtsZ were usually localized to potential division sites between the blocked septa. When the ftsK44 mutation was incorporated into the FtsK-GFP fusions, localization to midcell ranged between very weak and undetectable, suggesting that the FtsK44 mutant protein is defective in targeting the septum.


2019 ◽  
Author(s):  
Guillaume Witz ◽  
Erik van Nimwegen ◽  
Thomas Julou

AbstractLiving cells proliferate by completing and coordinating two essential cycles, a division cycle that controls cell size, and a DNA replication cycle that controls the number of chromosomal copies in the cell. Despite lacking dedicated cell cycle control regulators such as cyclins in eukaryotes, bacteria such as E. coli manage to tightly coordinate those two cycles across a wide range of growth conditions, including situations where multiple nested rounds of replication progress simultaneously. Various cell cycle models have been proposed to explain this feat, but it has been impossible to validate them so far due to a lack of experimental tools for systematically testing their different predictions. Recently new insights have been gained on the division cycle through the study of the structure of fluctuations in growth, size, and division in individual cells. In particular, it was found that cell size appears to be controlled by an adder mechanism, i.e. the added volume between divisions is held approximately constant and fluctuates independently of growth rate and cell size at birth. However, how replication initiation is regulated and coupled to cell size control remains unclear, mainly due to scarcity of experimental measurements on replication initiation at the single-cell level. Here, we used time-lapse microscopy in combination with microfluidics to directly measure growth, division and replication in thousands of single E. coli cells growing in both slow and fast growth conditions. In order to compare different phenomenological models of the cell cycle, we introduce a statistical framework which assess their ability to capture the correlation structure observed in the experimental data. Using this in combination with stochastic simulations, our data indicate that, instead of thinking of the cell cycle as running from birth to division, the cell cycle is controlled by two adder mechanisms starting at the initiation of replication: the added volume since the last initiation event controls the timing of both the next division event and the next replication initiation event. Interestingly the double-adder mechanism identified in this study has recently been found to explain the more complex cell cycle of mycobacteria, suggesting shared control strategies across species.


2021 ◽  
Author(s):  
Guillaume Le Treut ◽  
Fangwei Si ◽  
Dongyang Li ◽  
Suckjoon Jun

We examine five quantitative models of the cell-cycle and cell-size control in Escherichia coli and Bacillus subtilis that have been proposed over the last decade to explain single-cell experimental data generated with high-throughput methods. After presenting the statistical properties of these models, we test their predictions against experimental data. Based on simple calculations of the defining correlations in each model, we first dismiss the stochastic Helmstetter-Cooper model and the Initiation Adder model, and show that both the Replication Double Adder and the Independent Double Adder model are more consistent with the data than the other models. We then apply a recently proposed statistical analysis method and obtain that the Independent Double Adder model is the most likely model of the cell cycle. By showing that the Replication Double Adder model is fundamentally inconsistent with size convergence by the adder principle, we conclude that the Independent Double Adder model is most consistent with the data and the biology of bacterial cell-cycle and cell-size control. Mechanistically, the Independent Adder Model is equivalent to two biological principles: (i) balanced biosynthesis of the cell-cycle proteins, and (ii) their accumulation to a respective threshold number to trigger initiation and division.


2021 ◽  
Author(s):  
Alexandra Colin ◽  
Gabriele Micali ◽  
Louis Faure ◽  
Marco Cosentino Lagomarsino ◽  
Sven van Teeffelen

AbstractCells must control the cell cycle to ensure that key processes are brought to completion. In Escherichia coli, it is controversial whether cell division is tied to chromosome replication or to a replication-independent inter-division process. A recent model suggests instead that both processes may limit cell division with comparable odds in single cells. Here, we tested this possibility experimentally by monitoring single-cell division and replication over multiple generations at slow growth. We then perturbed cell width, causing an increase of the time between replication termination and division. As a consequence, replication became decreasingly limiting 21 for cell division, while correlations between birth and division and between subsequent replication-initiation events were maintained. Our experiments support the hypothesis that both chromosome replication and a replication-independent inter-division process can limit cell division: the two processes have balanced contributions in non-perturbed cells, while our width perturbations increase the odds of the replication-independent process being limiting.


2002 ◽  
Vol 184 (22) ◽  
pp. 6389-6394 ◽  
Author(s):  
Natalie Minkovsky ◽  
Arash Zarimani ◽  
Vasant K. Chary ◽  
Brian H. Johnstone ◽  
Bradford S. Powell ◽  
...  

ABSTRACT The Bacillus subtilis bex gene complemented the defect in an Escherichia coli era mutant. The Bex protein showed 39% identity and 67% similarity to the E. coli Era GTPase. In contrast to era, bex was not essential in all strains. bex mutant cells were elongated and filled with diffuse nucleoid material. They grew slowly and exhibited severely impaired spore formation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Julia E. Grimwade ◽  
Alan C. Leonard

Genome duplication is a critical event in the reproduction cycle of every cell. Because all daughter cells must inherit a complete genome, chromosome replication is tightly regulated, with multiple mechanisms focused on controlling when chromosome replication begins during the cell cycle. In bacteria, chromosome duplication starts when nucleoprotein complexes, termed orisomes, unwind replication origin (oriC) DNA and recruit proteins needed to build new replication forks. Functional orisomes comprise the conserved initiator protein, DnaA, bound to a set of high and low affinity recognition sites in oriC. Orisomes must be assembled each cell cycle. In Escherichia coli, the organism in which orisome assembly has been most thoroughly examined, the process starts with DnaA binding to high affinity sites after chromosome duplication is initiated, and orisome assembly is completed immediately before the next initiation event, when DnaA interacts with oriC’s lower affinity sites, coincident with origin unwinding. A host of regulators, including several transcriptional modulators, targets low affinity DnaA-oriC interactions, exerting their effects by DNA bending, blocking access to recognition sites, and/or facilitating binding of DnaA to both DNA and itself. In this review, we focus on orisome assembly in E. coli. We identify three known transcriptional modulators, SeqA, Fis (factor for inversion stimulation), and IHF (integration host factor), that are not essential for initiation, but which interact directly with E. coli oriC to regulate orisome assembly and replication initiation timing. These regulators function by blocking sites (SeqA) and bending oriC DNA (Fis and IHF) to inhibit or facilitate cooperative low affinity DnaA binding. We also examine how the growth rate regulation of Fis levels might modulate IHF and DnaA binding to oriC under a variety of nutritional conditions. Combined, the regulatory mechanisms mediated by transcriptional modulators help ensure that at all growth rates, bacterial chromosome replication begins once, and only once, per cell cycle.


2021 ◽  
Vol 12 ◽  
Author(s):  
Guillaume Le Treut ◽  
Fangwei Si ◽  
Dongyang Li ◽  
Suckjoon Jun

We examine five quantitative models of the cell-cycle and cell-size control in Escherichia coli and Bacillus subtilis that have been proposed over the last decade to explain single-cell experimental data generated with high-throughput methods. After presenting the statistical properties of these models, we test their predictions against experimental data. Based on simple calculations of the defining correlations in each model, we first dismiss the stochastic Helmstetter-Cooper model and the Initiation Adder model, and show that both the Replication Double Adder (RDA) and the Independent Double Adder (IDA) model are more consistent with the data than the other models. We then apply a recently proposed statistical analysis method and obtain that the IDA model is the most likely model of the cell cycle. By showing that the RDA model is fundamentally inconsistent with size convergence by the adder principle, we conclude that the IDA model is most consistent with the data and the biology of bacterial cell-cycle and cell-size control. Mechanistically, the Independent Adder Model is equivalent to two biological principles: (i) balanced biosynthesis of the cell-cycle proteins, and (ii) their accumulation to a respective threshold number to trigger initiation and division.


2017 ◽  
Vol 199 (19) ◽  
Author(s):  
Daniel Parrell ◽  
Yang Zhang ◽  
Sandra Olenic ◽  
Lee Kroos

ABSTRACT RasP is a predicted intramembrane metalloprotease of Bacillus subtilis that has been proposed to cleave the stress response anti-sigma factors RsiW and RsiV, the cell division protein FtsL, and remnant signal peptides within their transmembrane segments. To provide evidence for direct effects of RasP on putative substrates, we developed a heterologous coexpression system. Since expression of catalytically inactive RasP E21A inhibited expression of other membrane proteins in Escherichia coli, we added extra transmembrane segments to RasP E21A, which allowed accumulation of most other membrane proteins. A corresponding active version of RasP appeared to promiscuously cleave coexpressed membrane proteins, except those with a large periplasmic domain. However, stable cleavage products were not observed, even in clpP mutant E. coli. Fusions of transmembrane segment-containing parts of FtsL and RsiW to E. coli maltose-binding protein (MBP) also resulted in proteins that appeared to be RasP substrates upon coexpression in E. coli, including FtsL with a full-length C-terminal domain (suggesting that prior cleavage by a site 1 protease is unnecessary) and RsiW designed to mimic the PrsW site 1 cleavage product (suggesting that further trimming by extracytoplasmic protease is unnecessary). Purified RasP cleaved His6-MBP-RsiW(73–118) in vitro within the RsiW transmembrane segment based on mass spectrometry analysis, demonstrating that RasP is an intramembrane protease. Surprisingly, purified RasP failed to cleave His6-MBP-FtsL(23–117). We propose that the lack of α-helix-breaking residues in the FtsL transmembrane segment creates a requirement for the membrane environment and/or an additional protein(s) in order for RasP to cleave FtsL. IMPORTANCE Intramembrane proteases govern important signaling pathways in nearly all organisms. In bacteria, they function in stress responses, cell division, pathogenesis, and other processes. Their membrane-associated substrates are typically inferred from genetic studies in the native bacterium. Evidence for direct effects has come sometimes from coexpression of the enzyme and potential substrate in a heterologous host and rarely from biochemical reconstitution of cleavage in vitro. We applied these two approaches to the B. subtilis enzyme RasP and its proposed substrates RsiW and FtsL. We discovered potential pitfalls and solutions in heterologous coexpression experiments in E. coli, providing evidence that both substrates are cleaved by RasP in vivo but, surprisingly, that only RsiW was cleaved in vitro, suggesting that FtsL has an additional requirement.


Sign in / Sign up

Export Citation Format

Share Document