scholarly journals Blocking, Bending, and Binding: Regulation of Initiation of Chromosome Replication During the Escherichia coli Cell Cycle by Transcriptional Modulators That Interact With Origin DNA

2021 ◽  
Vol 12 ◽  
Author(s):  
Julia E. Grimwade ◽  
Alan C. Leonard

Genome duplication is a critical event in the reproduction cycle of every cell. Because all daughter cells must inherit a complete genome, chromosome replication is tightly regulated, with multiple mechanisms focused on controlling when chromosome replication begins during the cell cycle. In bacteria, chromosome duplication starts when nucleoprotein complexes, termed orisomes, unwind replication origin (oriC) DNA and recruit proteins needed to build new replication forks. Functional orisomes comprise the conserved initiator protein, DnaA, bound to a set of high and low affinity recognition sites in oriC. Orisomes must be assembled each cell cycle. In Escherichia coli, the organism in which orisome assembly has been most thoroughly examined, the process starts with DnaA binding to high affinity sites after chromosome duplication is initiated, and orisome assembly is completed immediately before the next initiation event, when DnaA interacts with oriC’s lower affinity sites, coincident with origin unwinding. A host of regulators, including several transcriptional modulators, targets low affinity DnaA-oriC interactions, exerting their effects by DNA bending, blocking access to recognition sites, and/or facilitating binding of DnaA to both DNA and itself. In this review, we focus on orisome assembly in E. coli. We identify three known transcriptional modulators, SeqA, Fis (factor for inversion stimulation), and IHF (integration host factor), that are not essential for initiation, but which interact directly with E. coli oriC to regulate orisome assembly and replication initiation timing. These regulators function by blocking sites (SeqA) and bending oriC DNA (Fis and IHF) to inhibit or facilitate cooperative low affinity DnaA binding. We also examine how the growth rate regulation of Fis levels might modulate IHF and DnaA binding to oriC under a variety of nutritional conditions. Combined, the regulatory mechanisms mediated by transcriptional modulators help ensure that at all growth rates, bacterial chromosome replication begins once, and only once, per cell cycle.

2015 ◽  
Vol 184 ◽  
pp. 425-450 ◽  
Author(s):  
Jacek T. Mika ◽  
Aster Vanhecke ◽  
Peter Dedecker ◽  
Toon Swings ◽  
Jeroen Vangindertael ◽  
...  

Escherichia coli (E. coli) cells replicate their genome once per cell cycle to pass on genetic information to the daughter cells. The SeqA protein binds the origin of replication, oriC, after DNA replication initiation and sequesters it from new initiations in order to prevent overinitiation. Conventional fluorescence microscopy studies of SeqA localization in bacterial cells have shown that the protein is localized to discrete foci. In this study we have used photo-activated localization microscopy (PALM) to determine the localization of SeqA molecules, tagged with fluorescent proteins, with a localization precision of 20–30 nm with the aim to visualize the SeqA subcellular structures in more detail than previously possible. SeqA–PAmCherry was imaged in wild type E. coli, expressed from plasmid or genetically engineered into the bacterial genome, replacing the native seqA gene. Unsynchronized cells as well as cells with a synchronized cell cycle were imaged at various time points, in order to investigate the evolution of SeqA localization during the cell cycle. We found that SeqA indeed localized into discrete foci but these were not the only subcellular localizations of the protein. A significant amount of SeqA–PAmCherry molecules was localized outside the foci and in a fraction of cells we saw patterns indicating localization at the membrane. Using quantitative PALM, we counted protein copy numbers per cell, protein copy numbers per focus, the numbers of foci per cell and the sizes of the SeqA clusters. The data showed broad cell-to-cell variation and we did not observe a correlation between SeqA–PAmCherry protein numbers and the cell cycle under the experimental conditions of this study. The numbers of SeqA–PAmCherry molecules per focus as well as the foci sizes also showed broad distributions indicating that the foci are likely not characterized by a fixed number of molecules. We also imaged an E. coli strain devoid of the dam methylase (Δdam) and observed that SeqA–PAmCherry no longer formed foci, and was dispersed throughout the cell and localized to the plasma membrane more readily. We discuss our results in the context of the limitations of the technique.


2021 ◽  
Vol 8 ◽  
Author(s):  
Godefroid Charbon ◽  
Belén Mendoza-Chamizo ◽  
Christopher Campion ◽  
Xiaobo Li ◽  
Peter Ruhdal Jensen ◽  
...  

During steady-state Escherichia coli growth, the amount and activity of the initiator protein, DnaA, controls chromosome replication tightly so that initiation only takes place once per origin in each cell cycle, regardless of growth conditions. However, little is known about the mechanisms involved during transitions from one environmental condition to another or during starvation stress. ATP depletion is one of the consequences of long-term carbon starvation. Here we show that DnaA is degraded in ATP-depleted cells. A chromosome replication initiation block is apparent in such cells as no new rounds of DNA replication are initiated while replication events that have already started proceed to completion.


2021 ◽  
Author(s):  
Alexandra Colin ◽  
Gabriele Micali ◽  
Louis Faure ◽  
Marco Cosentino Lagomarsino ◽  
Sven van Teeffelen

AbstractCells must control the cell cycle to ensure that key processes are brought to completion. In Escherichia coli, it is controversial whether cell division is tied to chromosome replication or to a replication-independent inter-division process. A recent model suggests instead that both processes may limit cell division with comparable odds in single cells. Here, we tested this possibility experimentally by monitoring single-cell division and replication over multiple generations at slow growth. We then perturbed cell width, causing an increase of the time between replication termination and division. As a consequence, replication became decreasingly limiting 21 for cell division, while correlations between birth and division and between subsequent replication-initiation events were maintained. Our experiments support the hypothesis that both chromosome replication and a replication-independent inter-division process can limit cell division: the two processes have balanced contributions in non-perturbed cells, while our width perturbations increase the odds of the replication-independent process being limiting.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Alexandra Colin ◽  
Gabriele Micali ◽  
Louis Faure ◽  
Marco Cosentino Lagomarsino ◽  
Sven van Teeffelen

Cells must control the cell cycle to ensure that key processes are brought to completion. In Escherichia coli, it is controversial whether cell division is tied to chromosome replication or to a replication-independent inter-division process. A recent model suggests instead that both processes may limit cell division with comparable odds in single cells. Here, we tested this possibility experimentally by monitoring single-cell division and replication over multiple generations at slow growth. We then perturbed cell width, causing an increase of the time between replication termination and division. As a consequence, replication became decreasingly limiting for cell division, while correlations between birth and division and between subsequent replication-initiation events were maintained. Our experiments support the hypothesis that both chromosome replication and a replication-independent inter-division process can limit cell division: the two processes have balanced contributions in non-perturbed cells, while our width perturbations increase the odds of the replication-independent process being limiting.


2020 ◽  
Author(s):  
Guillaume Le Treut ◽  
Fangwei Si ◽  
Dongyang Li ◽  
Suckjoon Jun

AbstractThe reference point for cell-size control in the cell cycle is a fundamental biological question. We previously reported that we were unable to reproduce the conclusions of Witz et al.’s eLife paper (Witz, van Nimwegen, and Julou 2019) entitled, “Initiation of chromosome replication controls both division and replication cycles in E. coli through a double-adder mechanism”, despite extensive efforts. In this ‘replication double adder’ (RDA) model, both replication and division cycles are determined via replication initiation as the sole implementation point of size control. Witz et al. justified the RDA model using a type of correlation analysis (the “I-value analysis”) that they developed. By contrast, we previously showed that, in both Escherichia coli and Bacillus subtilis, replication initiation and cell division are determined by balanced biosynthesis of key cell cycle proteins (e.g., DnaA for initiation and FtsZ for cell division) and their accumulation to their respective threshold numbers, which Witz et al. coined the ‘independent double adder’ (IDA) model. The adder phenotype is a natural quantitative consequence of these mechanistic principles. In a recent bioRxiv response to our report, Witz and colleagues explicitly confirmed two important limitations of the I-value analysis: (1) it is only applicable to non-overlapping cell cycles, wherein E. coli is known to deviate from the adder principle, and (2) it is only applicable to select biological models and, for example, cannot evaluate the IDA model. These limitations of the I-value analysis were not explained in the original eLife paper and were overlooked during the review process. In this report, we show using data analysis, mathematical modeling, and experiments why the I-value analysis - in its current implementation - cannot compare different biological models. Furthermore, the RDA model is incompatible with the adder principle and is not broadly supported by experimental data. For completeness, we also provide a detailed point-by-point response to Witz et al.’s response (Witz, Julou, and van Nimwegen 2020) in the Supplemental Information.


2006 ◽  
Vol 188 (21) ◽  
pp. 7449-7456 ◽  
Author(s):  
Douglas F. Browning ◽  
David J. Lee ◽  
Alan J. Wolfe ◽  
Jeffrey A. Cole ◽  
Stephen J. W. Busby

ABSTRACT The Escherichia coli K-12 nrf operon promoter can be activated fully by the FNR protein (regulator of fumarate and nitrate reduction) binding to a site centered at position −41.5. FNR-dependent transcription is suppressed by integration host factor (IHF) binding at position −54, and this suppression is counteracted by binding of the NarL or NarP response regulator at position −74.5. The E. coli acs gene is transcribed from a divergent promoter upstream from the nrf operon promoter. Transcription from the major acsP2 promoter is dependent on the cyclic AMP receptor protein and is modulated by IHF and Fis binding at multiple sites. We show that IHF binding to one of these sites, located at position −127 with respect to the nrf promoter, has a positive effect on nrf promoter activity. This activation is dependent on the face of the DNA helix, independent of IHF binding at other locations, and found only when NarL/NarP are not bound at position −74.5. Binding of NarL/NarP appears to insulate the nrf promoter from the effects of IHF. The acs-nrf regulatory region is conserved in other pathogenic E. coli strains and related enteric bacteria but differs in Salmonella enterica serovar Typhimurium.


Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 447
Author(s):  
Klaudyna Krause ◽  
Monika Maciąg-Dorszyńska ◽  
Anna Wosinski ◽  
Lidia Gaffke ◽  
Joanna Morcinek-Orłowska ◽  
...  

A direct link between DNA replication regulation and central carbon metabolism (CCM) has been previously demonstrated in Bacillus subtilis and Escherichia coli, as effects of certain mutations in genes coding for replication proteins could be specifically suppressed by particular mutations in genes encoding CCM enzymes. However, specific molecular mechanism(s) of this link remained unknown. In this report, we demonstrate that various CCM metabolites can suppress the effects of mutations in different replication genes of E. coli on bacterial growth, cell morphology, and nucleoid localization. This provides evidence that the CCM-replication link is mediated by metabolites rather than direct protein-protein interactions. On the other hand, action of metabolites on DNA replication appears indirect rather than based on direct influence on the replication machinery, as rate of DNA synthesis could not be corrected by metabolites in short-term experiments. This corroborates the recent discovery that in B. subtilis, there are multiple links connecting CCM to DNA replication initiation and elongation. Therefore, one may suggest that although different in detail, the molecular mechanisms of CCM-dependent regulation of DNA replication are similar in E. coli and B. subtilis, making this regulation an important and common constituent of the control of cell physiology in bacteria.


Microbiology ◽  
2011 ◽  
Vol 157 (1) ◽  
pp. 220-233 ◽  
Author(s):  
Bożena Nejman ◽  
Beata Nadratowska-Wesołowska ◽  
Agnieszka Szalewska-Pałasz ◽  
Alicja Węgrzyn ◽  
Grzegorz Węgrzyn

The pathogenicity of Shiga toxin-producing Escherichia coli (STEC) depends on the expression of stx genes that are located on lambdoid prophages. Effective toxin production occurs only after prophage induction, and one may presume that replication of the phage genome is important for an increase in the dosage of stx genes, positively influencing their expression. We investigated the replication of plasmids derived from Shiga toxin (Stx)-converting bacteriophages in starved E. coli cells, as starvation conditions may be common in the intestine of infected humans. We found that, unlike plasmids derived from bacteriophage λ, the Shiga toxin phage-derived replicons did not replicate in amino acid-starved relA + and relA − cells (showing the stringent and relaxed responses to starvation, respectively). The presence of the stable fraction of the replication initiator O protein was detected in all tested replicons. However, while ppGpp, the stringent response effector, inhibited the activities of the λ P R promoter and its homologues from Shiga toxin-converting bacteriophages, these promoters, except for λ P R, were only weakly stimulated by the DksA protein. We suggest that this less efficient (relative to λ) positive regulation of transcription responsible for transcriptional activation of the origin contributes to the inhibition of DNA replication initiation of Shiga toxin-converting bacteriophages in starved host cells, even in the absence of ppGpp (as in starved relA − hosts). Possible clinical implications of these results are discussed.


2012 ◽  
Vol 194 (18) ◽  
pp. 5020-5033 ◽  
Author(s):  
Verónica I. Martínez-Santos ◽  
Abraham Medrano-López ◽  
Zeus Saldaña ◽  
Jorge A. Girón ◽  
José L. Puente

ABSTRACTEnteropathogenic (EPEC) and enterohemorrhagic (EHEC)Escherichia coliare clinically important diarrheagenic pathogens that adhere to the intestinal epithelial surface. TheE. colicommon pili (ECP), or meningitis-associated and temperature-regulated (MAT) fimbriae, are ubiquitous among both commensal and pathogenicE. colistrains and play a role as colonization factors by promoting the interaction between bacteria and host epithelial cells and favoring interbacterial interactions in biofilm communities. The first gene of theecpoperon encodes EcpR (also known as MatA), a proposed regulatory protein containing a LuxR-like C-terminal helix-turn-helix (HTH) DNA-binding motif. In this work, we analyzed the transcriptional regulation of theecpgenes and the role of EcpR as a transcriptional regulator. EHEC and EPECecpRmutants produce less ECP, while plasmids expressing EcpR increase considerably the expression of EcpA and production of ECP. Theecpgenes are transcribed as an operon from a promoter located 121 bp upstream of the start codon ofecpR. EcpR positively regulates this promoter by binding to two TTCCT boxes distantly located upstream of theecppromoter, thus enhancing expression of downstreamecpgenes, leading to ECP production. EcpR mutants in the putative HTH DNA-binding domain are no longer able to activateecpexpression or bind to the TTCCT boxes. EcpR-mediated activation is aided by integration host factor (IHF), which is essential for counteracting the repression exerted by histone-like nucleoid-structuring protein (H-NS) on theecppromoter. This work demonstrates evidence about the interplay between a novel member of a diverse family of regulatory proteins and global regulators in the regulation of a fimbrial operon.


Sign in / Sign up

Export Citation Format

Share Document