scholarly journals IL-13 deficiency exacerbates lung damage and impairs epithelial-derived type 2 molecules during nematode infection

2020 ◽  
Author(s):  
AL Chenery ◽  
S Rosini ◽  
JE Parkinson ◽  
JA Herrera ◽  
Craig Lawless ◽  
...  

AbstractIL-13 plays a key role during protective type 2 immune responses at mucosal sites, such as during infection with nematodes. However, dysregulation of IL-13 can also contribute to the pathogenesis of atopic and fibrotic diseases such as allergic asthma. Matrix remodelling is an important component of repair processes in the lung but also a hallmark of chronic conditions involving fibrosis. Hence, understanding the role of IL-13 in tissue remodelling has important clinical implications. Since IL-13 shares receptors and signalling pathways with IL-4, disentangling the relative contributions of these type 2 cytokines has been challenging. Additionally, little is known about the singular role of IL-13 following acute tissue injury. In this study, we used Nippostrongylus brasiliensis infection as a model of acute lung tissue damage comparing responses between WT and IL-13-deficient mice, in which IL-4 signalling is intact. Importantly, we found that IL-13 played a critical role in limiting tissue injury and haemorrhaging in the lung following infection. Through proteomic and transcriptomic profiling, we identified IL-13-dependent changes in matrix and associated regulators. We further showed that IL-13 is required for the induction of epithelial-derived type 2 effector molecules such as RELM-α and surfactant protein D. Pathway analyses predicted that IL-13 was heavily involved in the induction of cellular stress responses and regulation of lung epithelial cell differentiation by suppression of Foxa2 pathways. Thus, we propose that IL-13 has tissue-protective functions during lung injury and regulates epithelial cell responses during type 2 immunity in this acute setting.

2021 ◽  
Vol 4 (8) ◽  
pp. e202001000
Author(s):  
Alistair L Chenery ◽  
Silvia Rosini ◽  
James E Parkinson ◽  
Jesuthas Ajendra ◽  
Jeremy A Herrera ◽  
...  

IL-13 is implicated in effective repair after acute lung injury and the pathogenesis of chronic diseases such as allergic asthma. Both these processes involve matrix remodelling, but understanding the specific contribution of IL-13 has been challenging because IL-13 shares receptors and signalling pathways with IL-4. Here, we used Nippostrongylus brasiliensis infection as a model of acute lung damage comparing responses between WT and IL-13-deficient mice, in which IL-4 signalling is intact. We found that IL-13 played a critical role in limiting tissue injury and haemorrhaging in the lung, and through proteomic and transcriptomic profiling, identified IL-13-dependent changes in matrix and associated regulators. We further showed a requirement for IL-13 in the induction of epithelial-derived type 2 effector molecules such as RELM-α and surfactant protein D. Pathway analyses predicted that IL-13 induced cellular stress responses and regulated lung epithelial cell differentiation by suppression of Foxa2 pathways. Thus, in the context of acute lung damage, IL-13 has tissue-protective functions and regulates epithelial cell responses during type 2 immunity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chun-Yuan Chang ◽  
Jianming Wang ◽  
Yuhan Zhao ◽  
Juan Liu ◽  
Xue Yang ◽  
...  

AbstractThe role of p53 in tumor suppression has been extensively studied and well-established. However, the role of p53 in parasitic infections and the intestinal type 2 immunity is unclear. Here, we report that p53 is crucial for intestinal type 2 immunity in response to the infection of parasites, such as Tritrichomonas muris and Nippostrongylus brasiliensis. Mechanistically, p53 plays a critical role in the activation of the tuft cell-IL-25-type 2 innate lymphoid cell circuit, partly via transcriptional regulation of Lrmp in tuft cells. Lrmp modulates Ca2+ influx and IL-25 release, which are critical triggers of type 2 innate lymphoid cell response. Our results thus reveal a previously unrecognized function of p53 in regulating intestinal type 2 immunity to protect against parasitic infections, highlighting the role of p53 as a guardian of immune integrity.


2020 ◽  
Vol 16 ◽  
Author(s):  
Mayank Chaudhary

Background:: Renin angiotensin system (RAS) is a critical pathway involved in blood pressure regulation. Octapeptide, angiotensin II (Ang aII), is biologically active compound of RAS pathway which mediates its action by binding to either angiotensin II type 1 receptor (AT1R) or angiotensin II type 2 receptor (AT2R). Binding of Ang II to AT1R facilitates blood pressure regulation whereas AT2R is primarily involved in wound healing and tissue remodelling. Objective:: Recent studies have highlighted additional role of AT2R to counter balance detrimental effects of AT1R. Activation of angiotensin II type 2 receptor using AT2R agonist has shown effect on natriuresis and release of nitric oxide. Additionally, AT2R activation has been found to inhibit angiotensin converting enzyme (ACE) and enhance angiotensin receptor blocker (ARB) activity. These findings highlight the potential of AT2R as novel therapeutic target against hypertension. Conclusion:: The potential role of AT2R highlights the importance of exploring additional mechanisms that might be crucial for AT2R expression. Epigenetic mechanisms including DNA methylation and histone modification have been explored vastly with relation to cancer but role of such mechanisms on expression of AT2R has recently gained interest.


2021 ◽  
Vol 27 (Supplement_1) ◽  
pp. S4-S4
Author(s):  
Belal Chami ◽  
Gulfam Ahmad ◽  
Angie Schroder ◽  
Patrick San Gabriel ◽  
Paul Witting

Abstract Neutrophils are short-lived immune cells that represent the major cell type recruited to the inflamed bowel releasing their azurophilic granules containing enzymes myeloperoxidase (MPO). Fecal and serum MPO levels has previously been shown to correlate to disease severity in IBD patients. MPO, in the presence of H2O2 and free Cl- undergoes a halogenation cycle, yielding the two-electron oxidant, hypochlorous acid (HOCl) - a potent bactericidal agent. However, chronic intestinal exposure to MPO/HOCl due to perpetual inflammation may cause secondary host-tissue injury and cell death. Neutrophil Extracellular Trap (NET)osis is a specialised form of neutrophil death where MPO is entrapped in a DNA scaffold and continues to elicit HOCl activity and may further contribute to host-tissue injury. We investigated the presence of NETs in surgically excised ileum samples from CD and healthy patients using advanced confocal microscopic techniques and found MPO, Neutrophil Elastase (NE) and Citrullinated Histone h3 (CitH3) - critical components of NET formation, individually positively correlate to the severity of histopathological intestinal injury. Furthermore, multiplex Opal™ IHC performed using LMS880 Airyscan-moduled microscopy with z-stacking revealed colocalization of NE, MPO, CitH3 and DAPI indicating the extensive presence of NETs in severely affected CD tissue. Using two pharmacological inhibitors of MPO in a dextran sodium sulphate (DSS) model of murine colitis, we demonstrated the pathological role of MPO in experimental colitis. MPO inhibitors, TEMPOL and AZD3241 delivered via daily i.p significantly rescued the course of colitis by abrogating clinical indices including body weight loss, disease activity index, inhibiting serum peroxidation, and preserving colon length, while significantly mitigating histoarchitectural damage associated with DSS-induced colitis. We also showed that MPO inhibition decreased neutrophil migration to the gut, suggesting MPO may play a role in perpetuating the inflammatory cell by further recruiting cells to the inflamed gut. Collectively, we have shown for the first time that MPO is not only an important clinical marker of disease severity but may also play a critical role in perpetuating host-tissue damage and inflammation.


2021 ◽  
Vol 10 (6) ◽  
pp. 1318
Author(s):  
Marianne Riou ◽  
Walid Oulehri ◽  
Cedric Momas ◽  
Olivier Rouyer ◽  
Fabienne Lebourg ◽  
...  

The coronavirus disease 2019 (COVID-19) pandemic has spread rapidly worldwide, with more than two million deaths. Evidence indicates the critical role of the vascular endothelium in its pathophysiology but, like potential changes in functional vasodilation, the vascular effect of SARS-CoV-2 at a given distance from the acute infection is largely unknown. We assessed brachial artery flow-mediated dilatation (FMD) in 27 COVID-19 patients needing conventional or intensive care unit hospitalization, three months after SARS-CoV-2 infection diagnosis and in nine age- and sex- matched control subjects. Interestingly, the FMD was lower in COVID-19 patients as compared to controls (8.2 (7.2–8.9) vs. 10.3 (9.1–11.7)); p = 0.002, and half of the hospitalized COVID-19 survivors presented with a reduced FMD < 8% at three months of COVID-19 onset. Impaired FMD was not associated with severe or critical SARS-CoV-2 infection, reflected by ICU hospitalization, total hospitalization duration, or severity of lung damage. In conclusion, reduced FMD is often observed even three months after hospitalization for SARS-CoV-2 infection, but such alteration predominantly appears to not be related to COVID-19 severity. Longer and larger follow-up studies will help to clarify the potential prognosis value of FMD among COVID-19 patients, as well as to further determine the mechanisms involved.


2005 ◽  
Vol 65 (24) ◽  
pp. 11486-11492 ◽  
Author(s):  
Imad Shureiqi ◽  
Yuanqing Wu ◽  
Dongning Chen ◽  
Xiu L. Yang ◽  
Baoxiang Guan ◽  
...  

Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Ellen E Gillis ◽  
Jennifer C Sullivan

There is increasing evidence supporting a critical role of the immune system in the development of hypertension. Our lab has previously reported sex differences in the renal T cell profile in both Spontaneously Hypertensive Rats (SHR) and Angiotensin II (Ang II) models of hypertension, with females having more anti-inflammatory regulatory T cells (Tregs) than males. Ang II has a well-defined role in the activation of pro-inflammatory T cells in hypertension via the angiotensin type-1 receptor (AT1R). Less is known about the role of the angiotensin type-2 receptor (AT2R) in the regulation of immune cells, although the AT2R has been shown to be cardioprotective and AT2R expression is greater in females than males. Based on the potential anti-hypertensive role of AT2Rs, we hypothesized that administration of an AT2R agonist, Compound 21 (C21), would increase renal Tregs, and this increase would be greater in females due to greater AT2R expression. Male and female SHR (10 weeks of age, n=3-4) were implanted with telemetry units for continuous monitoring of mean arterial pressure (MAP). Following 10 days of recovery, baseline MAP was recorded for 5 days. Rats were then divided into the following treatment groups: surgical controls, low dose C21 (150 ng/kg/min, sc by osmotic minipump), high dose C21 (300 ng/kg/min, sc by osmotic minipump). Kidneys were harvested after 2 weeks of treatment and flow cytometry was performed on whole kidney homogenates. MAP was not altered by C21 treatment in males (137±4 vs 134±4 vs 134±4 mmHg; n.s.) or females (128±2 vs 136±5 vs 134±4 mmHg; n.s.). Interestingly, despite having no effect on MAP, there was a significant decrease in renal CD3 + CD4 + FoxP3 + Tregs in females following both low and high doses of C21 (data expressed as % CD3 + CD4 + cells: 6±0.6 vs 3±0.6 vs 3.5±1.3 %, respectively; p=0.02). Tregs decrease in males following the high dose of C21 only (data expressed as % CD3 + CD4 + cells: 3.3±0.3 vs 3.3±0.5 vs 1.7±0.7 %, respectively; p=0.05). Total CD3 + T cells, CD3 + CD4 + T cells, and Th17 cells were not altered by C21 treatment. In conclusion, AT2R activation suppresses renal Tregs, and females are more sensitive than males. These data suggest a novel role for AT2R regulation in the kidney in hypertension.


2022 ◽  
Vol 23 ◽  
Author(s):  
Lin Yang ◽  
Zhixin Zhang ◽  
Doudou Wang ◽  
Yu Jiang ◽  
Ying Liu

Abstract: The mechanistic target of rapamycin (mTOR) is a pivotal regulator of cell metabolism and growth. In the form of two different multi-protein complexes, mTORC1 and mTORC2, mTOR integrates cellular energy, nutrient and hormonal signals to regulate cellular metabolic homeostasis. In type 2 diabetes mellitus (T2DM) aberrant mTOR signaling underlies its pathological conditions and end-organ complications. Substantial evidence suggests that two mTOR-mediated signaling schemes, mTORC1-p70S6 kinase 1 (S6K1) and mTORC2-protein kinase B (AKT), play a critical role in insulin sensitivity and that their dysfunction contributes to development of T2DM. This review summaries our current understanding of the role of mTOR signaling in T2DM and its associated complications, as well as the potential use of mTOR inhibitors in treatment of T2DM.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Juan de Toro-Martín ◽  
Tamara Fernández-Marcelo ◽  
Águeda González-Rodríguez ◽  
Fernando Escrivá ◽  
Ángela M. Valverde ◽  
...  

Abstract Maternal malnutrition plays a critical role in the developmental programming of later metabolic diseases susceptibility in the offspring, such as obesity and type 2 diabetes. Because the liver is the major organ that produces and supplies blood glucose, we aimed at defining the potential role of liver glycogen autophagy in the programming of glucose metabolism disturbances. To this end, newborns were obtained from pregnant Wistar rats fed ad libitum with a standard diet or 65% food-restricted during the last week of gestation. We found that newborns from undernourished mothers showed markedly high basal insulin levels whereas those of glucagon were decreased. This unbalance led to activation of the mTORC1 pathway and inhibition of hepatic autophagy compromising the adequate handling of glycogen in the very early hours of extrauterine life. Restoration of autophagy with rapamycin but not with glucagon, indicated no defect in autophagy machinery per se, but in signals triggered by glucagon. Taken together, these results support the notion that hyperinsulinemia is an important mechanism by which mobilization of liver glycogen by autophagy is defective in food-restricted animals. This early alteration in the hormonal control of liver glycogen autophagy may influence the risk of developing metabolic diseases later in life.


Sign in / Sign up

Export Citation Format

Share Document