scholarly journals Understanding the potential benefits of adaptive therapy for metastatic melanoma

2020 ◽  
Author(s):  
Eunjung Kim ◽  
Joel S. Brown ◽  
Zeynep Eroglu ◽  
Alexander R.A. Anderson

AbstractAdaptive therapy is an evolution-based treatment approach that aims to maintain tumor volume by employing minimum effective drug doses or timed drug holidays. For successful adaptive therapy outcomes, it is critical to find the optimal timing of treatment switch points. Mathematical models are ideal tools to facilitate adaptive therapy dosing and switch time points. We developed two different mathematical models to examine interactions between drug-sensitive and resistant cells in a tumor. The first model assumes genetically fixed drug-sensitive and resistant populations that compete for limited resources. Resistant cell growth is inhibited by sensitive cells. The second model considers phenotypic switching between drug-sensitive and resistant cells. We calibrated each model to fit melanoma patient biomarker changes over time and predicted patient-specific adaptive therapy schedules. Overall, the models predict that adaptive therapy would have delayed time to progression by 6-25 months compared to continuous therapy with dose rates of 6%-74% relative to continuous therapy. We identified predictive factors driving the clinical time gained by adaptive therapy. The first model predicts 6-20 months gained from continuous therapy when the initial population of sensitive cells is large enough, and when the sensitive cells have a large competitive effect on resistant cells. The second model predicts 20-25 months gained from continuous therapy when the switching rate from resistant to sensitive cells is high and the growth rate of sensitive cells is low. This study highlights that there is a range of potential patient specific benefits of adaptive therapy, depending on the underlying mechanism of resistance, and identifies tumor specific parameters that modulate this benefit.

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 823 ◽  
Author(s):  
Eunjung Kim ◽  
Joel S. Brown ◽  
Zeynep Eroglu ◽  
Alexander R.A. Anderson

Adaptive therapy is an evolution-based treatment approach that aims to maintain tumor volume by employing minimum effective drug doses or timed drug holidays. For successful adaptive therapy outcomes, it is critical to find the optimal timing of treatment switch points in a patient-specific manner. Here we develop a combination of mathematical models that examine interactions between drug-sensitive and resistant cells to facilitate melanoma adaptive therapy dosing and switch time points. The first model assumes genetically fixed drug-sensitive and -resistant popul tions that compete for limited resources. The second model considers phenotypic switching between drug-sensitive and -resistant cells. We calibrated each model to fit melanoma patient biomarker changes over time and predicted patient-specific adaptive therapy schedules. Overall, the models predict that adaptive therapy would have delayed time to progression by 6–25 months compared to continuous therapy with dose rates of 6–74% relative to continuous therapy. We identified predictive factors driving the clinical time gained by adaptive therapy, such as the number of initial sensitive cells, competitive effect, switching rate from resistant to sensitive cells, and sensitive cell growth rate. This study highlights that there is a range of potential patient-specific benefits of adaptive therapy and identifies parameters that modulate this benefit.


2021 ◽  
Author(s):  
Masud M.A ◽  
Jae-Young Kim ◽  
Cheol-Ho Pan ◽  
Eunjung Kim

A long-standing practice in the treatment of cancer is that of hitting hard with the maximum tolerated dose to eradicate tumors. This continuous therapy, however, selects for resistant cells, leading to the failure of the treatment. A different type of treatment strategy, adaptive therapy, has recently been shown to have a degree of success in both preclinical xenograft experiments and clinical trials. Adaptive therapy is used to maintain a tumor's volume by exploiting the competition between drug-sensitive and drug-resistant cells with minimum effective drug doses or timed drug holidays. To further understand the role of competition in the outcomes of adaptive therapy, we developed a 2D on-lattice agent-based model. Our simulations show that the superiority of the adaptive strategy over continuous therapy depends on the local competition shaped by the spatial distribution of resistant cells. Cancer cell migration and increased carrying capacity accelerate the progression of the tumor under both types of treatments by reducing the spatial competition. Intratumor competition can also be affected by fibroblasts, which produce microenvironmental factors that promote cancer cell growth. Our simulations show that the spatial architecture of fibroblasts modulates the benefits of adaptive therapy. Finally, as a proof of concept, we simulated the outcomes of adaptive therapy in multiple metastatic sites composed of different spatial distributions of fibroblasts and drug-resistant cell populations.


Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 334 ◽  
Author(s):  
Jin Won Kim ◽  
Ahrum Min ◽  
Seock-Ah Im ◽  
Hyemin Jang ◽  
Yu Jin Kim ◽  
...  

The aim of this study was to elucidate the carryover effect of olaparib to subsequent chemotherapy and its underlying mechanisms. We generated olaparib-resistant SNU-484, SNU-601, SNU-668, and KATO-III gastric cancer cell lines and confirmed their resistance by cell viability and colony forming assays. Notably, olaparib-resistant cell lines displayed cross-resistance to cisplatin except for KATO-III. Inversely, olaparib-resistant SNU-484, SNU-668, and KATO-III were more sensitive to irinotecan than their parental cells. However, sensitivity to paclitaxel remained unaltered. There were compensatory changes in the ATM/ATR axis and p-Chk1/2 protein expression. ERCC1 was also induced in olaparib-resistant SNU-484, SNU-601, and SNU-668, which showed cross-resistance to cisplatin. Olaparib-resistant cells showed tyrosyl-DNA phosphodiesterase 1 (TDP1) downregulation with higher topoisomerase 1 (TOP1) activity, which is a target of irinotecan. These changes of TOP1 and TDP1 in olaparib-resistant cells was confirmed as the underlying mechanism for increased irinotecan sensitivity through manipulated gene expression of TOP1 and TDP1 by specific plasmid transfection and siRNA. The patient-derived xenograft model established from the patient who acquired resistance to olaparib with BRCA2 mutation showed increased sensitivity in irinotecan. In conclusion, the carryover effects of olaparib to improve antitumor effect of subsequent irinotecan were demonstrated. These effects should be considered when determining the subsequent therapy with olaparib.


Author(s):  
Maximilian Strobl ◽  
Jeffrey West ◽  
Yannick Viossat ◽  
Mehdi Damaghi ◽  
Mark Robertson-Tessi ◽  
...  

Abstract“Control and conquer” - this is the philosophy behind adaptive therapy, which seeks to exploit intra-tumoural competition to avoid, or at least, delay the emergence of therapy resistance in cancer. Motivated by promising results from theoretical, experimental and, most recently, a clinical study in prostate cancer, there is an increasing interest in extending this approach to other cancers. As such, it is urgent to understand the characteristics of a cancer which determine whether it will respond well to adaptive therapy, or not. A plausible candidate for such a selection criterion is the fitness cost of resistance. In this paper, we study a simple competition model between sensitive & resistant cell populations to investigate whether the presence of a cost is a necessary condition for adaptive therapy to extend the time to progression beyond that of a standard-of-care continuous therapy. We find that for tumours close to their environmental carrying capacity such a cost of resistance is not required. However, for tumours growing far from carrying capacity, a cost may be required to see meaningful gains. Notably, we show that in such cases it is important to consider the cell turnover in the tumour and we discuss its role in modulating the impact of a cost of resistance. Overall, our work helps to clarify under which circumstances adaptive therapy may be beneficial, and suggests that turnover may play an unexpectedly important role in the decision making process.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5182-5182
Author(s):  
Xutao Guo ◽  
Bowen Yan ◽  
Yi Qiu

Acute myeloid leukemia (AML) exhibits large intrinsic variation in drug responsiveness due to its inherent heterogeneity. Therefore, it is important to understand the resistant mechanism in order to improve the treatment. In our previously study, the OCI-AML2-resistant cell lines were established to resist cytarabine (Ara-C) in the concentration of 50 µM (OCI-AML2 R50). The RNA-seq results showed that many genes changed in the resistant cells compared to wild type OCI-AML2 cells. One of the most remarkably decreased gene in resistant cells was HOXA11 (Homeobox A11). It is the part of the A cluster on chromosome 7 and encodes a DNA-binding transcription factor which regulates gene expression, morphogenesis, and differentiation. In this study, we have evaluated the importance of HOXA11 in AML chemoresistance. We found that knockdown of HOXA11 repressed the WT OCI-AML2 cell proliferation and increased the population of cells expressing CD123 and CD47 LSC (Leukemia stem cell) markers and enhanced the resistance to Ara-C in vitro, while overexpression of HOXA11 showed the reverse effect. These results support the idea that HOXA11 promotes drug sensitivity and apoptosis in AML. However, the result also showed that overexpression of HOXA11 repressed the OCI-AML2 R50 cell proliferation and enhanced the resistance. Therefore, HOXA11 plays opposite role in sensitive cells and resistant cells. We further investigated the mechanism for these effects. We found that knockdown of HOXA11 decreased the p53 gene expression and overexpression of HOXA11 increased the expression of p53 in OCI-AML2 and R50 cells. Further, in OCI-AML2 R50 cells p53 has a hotspot mutation in DNA binding site and studies have shown that p53 mutation enhance cancer cell survival and chemoresistance. Therefore, our study shows dual roles for HOXA11 in cell survival. In p53 wild type parental AML2 cells, HOXA11 induces wild type p53 expression to enhance drug sensitivity while in resistant cell, HOXA11 promotes mutant p53 expression and enhances the resistance of chemotherapy. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Yi Shi ◽  
Xiaojiang Wang ◽  
Qiong Zhu ◽  
Gang Chen

Abstract Background: Sorafenib is the first molecular-targeted drug for the treatment of advanced hepatocellular carcinoma (HCC). However, its treatment efficiency decreases after a short period of time because of the development of drug resistance. This study investigates the role of key genes in regulating sorafenib-resistance in hepatocellular carcinoma and elucidates the mechanism of drug resistance. Methods: The HCC HepG2 cells were used to generate a sorafenib-resistant cell model by culturing the cells in gradually increasing concentration of sorafenib. RNA microarray was applied to profile gene expression and screen key genes associated with sorafenib resistance. Specific targets were knockdown in sorafenib-resistant HepG2 cells for functional studies. The HCC model was established in ACI rats using Morris hepatoma3924A cells to validate selected genes associated with sorafenib resistance in vivo. Results: The HepG2 sorafenib-resistant cell model was successfully established. The IC50 of sorafenib was 9.988mM in HepG2 sorafenib-resistant cells. A total of 35 up-regulated genes were detected by expression profile chip. High-content screening technology was used and a potential drug-resistant gene RPL28 was filtered out. After knocking down of RPL28 in HepG2 sorafenib-resistant cells, the results of cell proliferation and apoptosis illustrated that RPL28 is the key drug-resistant gene in the cells. Furthermore, it was found that both RNA and protein expression of RPL28 increased in HepG2 sorafenib-resistant specimens of Morris Hepatoma rats. In addition, the expression of functional proteins Ki-67 increased in sorafenib-resistant cells. Conclusion: Our study suggested that RPL28 was a key gene for sorafenib resistance in HCC both in vitro and in vivo.


1974 ◽  
Vol 16 (3) ◽  
pp. 603-621
Author(s):  
C. ALTANER ◽  
J. MATOSKA

Hamster cells transformed with the Schmidt-Ruppin strain of avian sarcoma virus were selected for resistance to ethidium bromide (EB). The resistant cell lines proliferated in the presence of up to 30 µg/ml EB. From avian sarcoma virus-transformed hamster cells already resistant to bromodeoxy-uridine (BrdU), ethidium bromide-resistant cells which were able to grow in 10 µg/ml EB were also prepared. These cells remain deficient in thymidine kinase activity and are suitable for selective preparation of hybrid cells. The EB resistance was genetically stable. The EB-resistant cell lines, and doubly resistant cells (BrdU, EB) showed no differences in mitochondrial ultrastructure compared with the original cell lines. Thymidine incorporation into mitochondrial DNA was not influenced by EB resistance. All resistant cell lines, including the doubly resistant cell line, contained the avian sarcoma virus genome. The number of cells needed for positive rescue experiments for avian sarcoma virus genome by cell fusion with permissive chicken embryo cells was the same as with the original cell lines. The single EB-resistant cell lines contained R-type virus-like particles, while in BrdU-resistant and doubly resistant cells the R-type particles were absent. The possible nature of EB resistance is discussed.


Blood ◽  
2002 ◽  
Vol 99 (2) ◽  
pp. 655-663 ◽  
Author(s):  
Joya Chandra ◽  
Emma Mansson ◽  
Vladimir Gogvadze ◽  
Scott H. Kaufmann ◽  
Freidoun Albertioni ◽  
...  

Abstract The purine nucleoside 2-chlorodeoxyadenosine (CdA) is often used in leukemia therapy. Its efficacy, however, is compromised by the emergence of resistant cells. In the present study, 3 CdA-resistant cell lines were generated and characterized. Their ability to accumulate 2-chloroadenosine triphosphate (CdATP) varied, reflecting differences in activities of deoxycytidine kinase (dCK) and deoxyguanosine kinase (dGK). Nonetheless, the selected lines were uniformly resistant to CdA-induced apoptosis, as assessed by caspase activation and DNA fragmentation. In contrast, cytosols from resistant cells were capable of robust caspase activation when incubated in the presence of cytochrome c and dATP. Moreover, replacement of dATP with CdATP also resulted in caspase activation in the parental and some of the resistant cell lines. Strikingly, CdA-induced decreases in mitochondrial transmembrane potential and release of cytochrome c from mitochondria were observed in the parental cells but not in any resistant lines. The lack of cytochrome c release correlated with an increased ability of mitochondria from resistant cells to sequester free Ca2+. Consistent with this enhanced Ca2+buffering capacity, an early increase in cytosolic Ca2+after CdA treatment of parental cells but not resistant cells was detected. Furthermore, CdA-resistant cells were selectively cross-resistant to thapsigargin but not to staurosporine- or Fas-induced apoptosis. In addition, CdA-induced caspase-3 activation and DNA fragmentation were inhibited by the Ca2+ chelator BAPTA-AM in sensitive cells. Taken together, the data indicate that the mechanism of resistance to CdA may be dictated by changes in Ca2+-sensitive mitochondrial events.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 113-113 ◽  
Author(s):  
Chad C. Bjorklund ◽  
Deborah J. Kuhn ◽  
Jairo A. Matthews ◽  
Michael Wang ◽  
Veerabhadran Baladandayuthapani ◽  
...  

Abstract Abstract 113 Background: Novel drugs such as the immunomodulatory agent lenalidomide have revolutionized the treatment of multiple myeloma, as evidenced by an increasing overall survival for patients with both newly-diagnosed, and relapsed and/or refractory disease. Despite these improvements, myeloma remains incurable, and is still characterized by a trend for increasing chemoresistance at relapse, with a decreasing duration of benefit from each successive line of therapy. By understanding the mechanisms responsible for the emergence of drug resistance, which have so far not been well characterized in the case of lenalidomide, it may be possible to rationally design novel regimens that could either overcome this resistance, or possibly prevent its emergence altogether. Methods: To improve our understanding of the mechanisms responsible for lenalidomide resistance, we developed cell line models of interleukin (IL)-6-dependent (ANBL-6 and KAS-6/1) and –independent (U266 and MM1.S) lenalidomide-resistant multiple myeloma cells. Starting at a concentration that was 1/10 of the IC50 for lenalidomide's anti-proliferative effects in drug-naïve cells, increasing drug concentrations were used until all the cell lines could proliferate and maintain cell membrane integrity in the presence of 10 μM lenalidomide. These cell lines were then used as an in vitro model of lenalidomide-specific drug resistance, and subjected to further characterization, including with gene expression profiling. Results: Resistance to lenalidomide was evidenced by a dramatic, 100-1000-fold increase in the IC50 values of these myeloma cells. In the case of ANBL-6 cells, for example, drug-naïve cells showed an IC50 of 0.14 μM using tetrazolium dye-based viability assays, but this increased to >100 μM in the drug-resistant cells, as was the case in U266 and MM1.S cells. This resistance was a stable phenotype, since removal of lenalidomide for seven to ninety days from cell culture conditions did not re-sensitize them when 10 μM lenalidomide was reintroduced. Gene expression profiling followed by pathway analysis to examine changes at the transcript level between wild-type parental and lenalidomide-resistant cell lines identified the Wnt/β-catenin pathway as the most altered across all cell lines. Increased expression was seen in several members of the low-density-lipoprotein receptor related protein family, including LRP1 and 5; members of the wingless-type MMTV integrations site family, including WNT3 and 4; β-catenin; and downstream Wnt/β-catenin targets such as CD44. Similar changes were detected in primary samples from a patient who developed clinically lenalidomide-refractory disease. Reporter assays revealed an up to 5-fold increase in LEF/TCF-dependent transcription both in drug-naïve cells acutely exposed to lenalidomide, and in their chronically exposed, lenalidomide-resistant clones. Western blotting and flow cytometry confirmed that these lenalidomide-resistant cells had increased expression by 2-20 fold of β-catenin and CD44, as well as other LEF/TCF targets, including Cyclin D1 and c-Myc. Comparable changes occurred after lenalidomide exposure in myeloma cells grown in the context of bone marrow stroma. Notably, lenalidomide-resistant cells showed decreased expression of casein kinase 1 and increased phosphorylation of glycogen synthase kinase 3 at Ser21/9, both of which would reduce the phosphorylation of β-catenin needed for its later proteasome-mediated degradation. Stimulation of the Wnt/β-catenin pathway with recombinant human Wnt3a resulted in resistance to lenalidomide in wild-type, drug-naïve cells, as evidenced by a 10-fold increase in the IC50. Conversely, exposure of lenalidomide-resistant cell lines to quercetin, a known antagonist of the β-catenin/TCF interaction, induced a partial re-sensitization to lenalidomide. Conclusions: These data support the hypothesis that activation of the Wnt/β-catenin pathway represents a mechanism of both acute and chronic resistance to the anti-proliferative effects of lenalidomide in multiple myeloma. Moreover, they support the development of strategies aimed at suppressing Wnt/β-catenin activity to resensitize multiple myeloma to the effects of this immunomodulatory agent in vivo. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Jingjing Zhang ◽  
Jin Zhao ◽  
Wenjing Zhang ◽  
Guanyuan Liu ◽  
Dongmei Yin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document