scholarly journals Counterfactual Hypothesis Testing of Tumor Microenvironment Scenarios Through Semantic Image Synthesis

2020 ◽  
Author(s):  
Daniel Li ◽  
Qiang Ma ◽  
Jennifer Chen ◽  
Andrew Liu ◽  
Justin Cheung ◽  
...  

AbstractRecent multiplexed protein imaging technologies make it possible to characterize cells, their spatial organization, and interactions within microenvironments at unprecedented resolution. Although observational data can reveal spatial associations, it does not allow users to infer biologically causative relationships and interactions between cells. To address this challenge, we develop a generative model that allows users to test hypotheses about the effect of cell-cell interactions on protein expression through in silico perturbation. Our Cell-Cell Interaction GAN (CCIGAN) model employs a generative adversarial network (GAN) architecture to generate biologically realistic multiplexed cell images from semantic cell segmentations. Our approach is unique in considering all imaging channels simultaneously, and we show that it successfully captures known tumor-immune cell interactions missed by other state-of-the-art GAN models, and yields biological insights without requiring in vivo manipulation. CCIGAN accepts data from multiple imaging technologies and can infer interactions from single images in any health or disease context.

2018 ◽  
Vol 115 (48) ◽  
pp. 12112-12117 ◽  
Author(s):  
Rebekka E. Breier ◽  
Cristian C. Lalescu ◽  
Devin Waas ◽  
Michael Wilczek ◽  
Marco G. Mazza

Phytoplankton often encounter turbulence in their habitat. As most toxic phytoplankton species are motile, resolving the interplay of motility and turbulence has fundamental repercussions on our understanding of their own ecology and of the entire ecosystems they inhabit. The spatial distribution of motile phytoplankton cells exhibits patchiness at distances of decimeter to millimeter scales for numerous species with different motility strategies. The explanation of this general phenomenon remains challenging. Furthermore, hydrodynamic cell–cell interactions, which grow more relevant as the density in the patches increases, have been so far ignored. Here, we combine particle simulations and continuum theory to study the emergence of patchiness in motile microorganisms in three dimensions. By addressing the combined effects of motility, cell–cell interaction, and turbulent flow conditions, we uncover a general mechanism: The coupling of cell–cell interactions to the turbulent dynamics favors the formation of dense patches. Identification of the important length and time scales, independent from the motility mode, allows us to elucidate a general physical mechanism underpinning the emergence of patchiness. Our results shed light on the dynamical characteristics necessary for the formation of patchiness and complement current efforts to unravel planktonic ecological interactions.


Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 565
Author(s):  
Qasem Ramadan ◽  
Sajay Bhuvanendran Nair Gourikutty ◽  
Qingxin Zhang

Improved in vitro models of human organs for predicting drug efficacy, interactions, and disease modelling are crucially needed to minimize the use of animal models, which inevitably display significant differences from the human disease state and metabolism. Inside the body, cells are organized either in direct contact or in close proximity to other cell types in a tightly controlled architecture that regulates tissue function. To emulate this cellular interface in vitro, an advanced cell culture system is required. In this paper, we describe a set of compartmentalized silicon-based microfluidic chips that enable co-culturing several types of cells in close proximity with enhanced cell–cell interaction. In vivo-like fluid flow into and/or from each compartment, as well as between adjacent compartments, is maintained by micro-engineered porous barriers. This porous structure provides a tool for mimicking the paracrine exchange between cells in the human body. As a demonstrating example, the microfluidic system was tested by culturing human adipose tissue that is infiltrated with immune cells to study the role if the interplay between the two cells in the context of type 2 diabetes. However, the system provides a platform technology for mimicking the structure and function of single- and multi-organ models, which could significantly narrow the gap between in vivo and in vitro conditions.


2021 ◽  
Author(s):  
Brendan T Innes ◽  
Gary D Bader

Cell-cell interactions are often predicted from single-cell transcriptomics data based on observing receptor and corresponding ligand transcripts in cells. These predictions could theoretically be improved by inspecting the transcriptome of the receptor cell for evidence of gene expression changes in response to the ligand. It is commonly expected that a given receptor, in response to ligand activation, will have a characteristic downstream gene expression signature. However, this assumption has not been well tested. We used ligand perturbation data from both the high-throughput Connectivity Map resource and published transcriptomic assays of cell lines and purified cell populations to determine whether ligand signals have unique and generalizable transcriptional signatures across biological conditions. Most of the receptors we analyzed did not have such characteristic gene expression signatures - instead these signatures were highly dependent on cell type. Cell context is thus important when considering transcriptomic evidence of ligand signaling, which makes it challenging to build generalizable ligand-receptor interaction signatures to improve cell-cell interaction predictions.


2021 ◽  
Author(s):  
Rob C. Oslund ◽  
Tamara Reyes-Robles ◽  
Cory H. White ◽  
Jake H. Tomlinson ◽  
Kelly A. Crotty ◽  
...  

AbstractCell-cell interactions drive essential biological processes critical to cell and tissue development, function, pathology, and disease outcome. The growing appreciation of immune cell interactions within disease environments has led to significant efforts to develop protein- and cell-based therapeutic strategies. A better understanding of these cell-cell interactions will enable the development of effective immunotherapies. However, characterizing these complex cellular interactions at molecular resolution in their native biological contexts remains challenging. To address this, we introduce photocatalytic cell tagging (PhoTag), a modality agnostic platform for profiling cell-cell interactions. Using photoactivatable flavin-based cofactors, we generate phenoxy radical tags for targeted labeling at the cell surface. Through various targeting modalities (e.g. MHC-Multimer, antibody, single domain antibody (VHH)) we deliver a flavin photocatalyst for cell tagging within monoculture, co-culture, and peripheral blood mononuclear cells. PhoTag enables highly selective tagging of the immune synapse between an immune cell and an antigen-presenting cell through targeted labeling at the cell-cell junction. This allowed for the ability to profile gene expression-level differences between interacting and bystander cell populations. Given the modality agnostic and spatio-temporal nature of PhoTag, we envision its broad utilization to detect and profile intercellular interactions within an immune synapse and other confined cellular regions for any biological system.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1326-1326
Author(s):  
Adrian Schwarzer ◽  
Martin May ◽  
Harald Genth ◽  
Zhixiong Li ◽  
Christopher Baum ◽  
...  

Abstract Molecular hallmarks of T-ALL are the aberrant activation of NOTCH signaling and high activity of the PI3K-AKT-mTOR pathway. Upregulated mTOR and NOTCH have been linked to the resistance of T-ALL to chemotherapy as well as to high frequencies of leukemia-initiating cells. Hence, the mTOR and the NOTCH pathways are promising therapeutic targets in T-ALL. However, clinical success of the mTOR inhibitor Rapamycin in acute leukemia has been disappointing. Similar results have been observed in mouse models of T-ALL treated with Notch inhibitors. To investigate the impact of mTOR and Notch inhibition in a genetically complex T-ALL, we developed an aggressive murine T-ALL model, driven by tyrosine kinase signaling, loss of Pten, Cux1-haploinsufficiency and constitutive Notch signaling. In vitro, T-ALL blasts were highly sensitive to inhibition of AKT, mTOR and Notch signaling. We transplanted the leukemias into secondary recipients and initiated treatment with Rapamycin after the onset of leukemia. Rapamycin significantly prolonged survival of the animals (placebo: 27 days, Rapamycin 49 days, p<0.001). Eventually, all Rapamycin treated animals succumbed to the T-ALL that extensively infiltrated the bone marrow and solid organs despite continuous drug administration. When Rapamycin-resistant blasts were explanted and cultured in petri dishes they again became susceptible to Rapamycin, demonstrating a context-dependent resistance rather than outgrowth of intrinsically resistant clones. Gene set enrichment analysis revealed that Rapamycin-resistant T-ALL in vivo upregulated genetic networks associated with cell-cell interactions. Stromal cell support from OP9-cells as well as from mesenchymal stem cells recapitulated the in vivo effect and induced resistance to mTOR and Notch-inhibition in T-ALL blasts. Coating the tissue culture wells with Collagen, Fibronectin, Retronectin or Matrigel, did not elicit resistance. By using trans-well assays we show that the stroma-induced resistance was dependent on direct cell-cell interactions. Immunoblots and PhosFlow probing the mTORC1/C2 and Notch pathway demonstrated an identical drug effect on their intracellular targets in resistant T-ALL blasts cultured on stroma cells and susceptible cells in suspension. Since the number of molecules potentially involved in cell-to-cell contacts is vast, we focused on central nodes that organize this process in order to find a potentially druggable target that is critically involved in stroma-induced resistance. Transcriptome profiling pointed towards upregulation of Rac-associated pathways. We determined the activation of Rac1 by PAK-pull down assays in T-ALL blasts grown in suspension or on stromal cells. We observed an increase (FC=1.96 ± 0.58, p=0.04) in activated Rac1 in the T-ALL blasts in contact with a stromal layer. To determine whether Rac activation plays a role in stroma-induced resistance, we devised a strategy to abrogate Rac signaling in T-ALL blasts, but not in the stromal cells, since inhibition of Rac in stromal cells by the Rac-inhibitor NSC23766 led to the their detachment. Furthermore, Rac1,2 and 3 can be functionally redundant, making knock down experiments using shRNAs challenging. The Clostridium difficile serotype F strain 1470 produces toxin B isoform (TcdBF), that selectively glucosylates and inactivates Rac(1,2,3). We pretreated T-ALL blasts with TcdBF and observed a dose-dependent functional inhibition of Rac GTPases monitored by dephosphorylation of the Rac effector kinase pS144/141-PAK-1/2. T-ALL blasts were then incubated for 5 hours with increasing toxin doses, washed 3 times and incubated in toxin-free medium. Eighteen hours after the end of the exposure to the toxins, Rac was still inhibited. Strikingly, in the TcdBF-pretreated T-ALL, the stroma-induced resistance effect was abrogated and clusters of apoptotic cells were clearly visible (>2 fold reduction of the input, p=0.002). In contrast, the carrier-treated T-ALL exhibited resistance to the inhibitors on stroma (>10 fold expansion of the input, p<0.0003). Altogether, we identify the Rac-GTPases as a nexus of stroma-induced drug resistance and show that inhibition of Rac and mTOR is synthetically lethal to T-ALL blasts T-ALL blasts that are in contact with stromal cells, paving the way to augment the effectiveness of small molecule inhibitors in acute leukemia. Disclosures No relevant conflicts of interest to declare.


Development ◽  
2001 ◽  
Vol 128 (7) ◽  
pp. 1211-1219 ◽  
Author(s):  
A. Arai ◽  
A. Nakamoto ◽  
T. Shimizu

In embryos of clitellate annelids (i.e. oligochaetes and leeches), four ectodermal teloblasts (ectoteloblasts N, O, P and Q) are generated on either side through a stereotyped sequence of cell divisions of a proteloblast, NOPQ. The four ectoteloblasts assume distinct fates and produce bandlets of smaller progeny cells, which join together to form an ectodermal germ band. The pattern of the germ band, with respect to the ventrodorsal order of the bandlets, has been highly preserved in clitellate annelids. We show that specification of ectoteloblast lineages in the oligochaete annelid Tubifex involves cell interaction networks distinct from those in leeches. Cell ablation experiments have shown that fates of teloblasts N, P and Q in Tubifex embryos are determined rigidly as early as their birth. In contrast, the O teloblast and its progeny are initially pluripotent and their fate becomes restricted to the O fate through an inductive signal emanating from the P lineage. In the absence of this signal, the O lineage assumes the P fate. These results differ significantly from those obtained in embryos of the leech Helobdella, suggesting the diversity of patterning mechanisms that give rise to germ bands with similar morphological pattern.


Sign in / Sign up

Export Citation Format

Share Document