scholarly journals One Health, One Hive: A scoping review of honey bees, climate change, pollutants, and antimicrobial resistance

2020 ◽  
Author(s):  
Etienne J. de Jongh ◽  
Sherilee L. Harper ◽  
Shelby S. Yamamoto ◽  
Carlee J. Wright ◽  
Craig W. Wilkinson ◽  
...  

AbstractAnthropogenic climate change and increasing antimicrobial resistance (AMR) together threaten the last 50 years of public health gains. Honey bees are a model One Health organism to investigate interactions between climate change and AMR. The objective of this scoping review was to examine the range, extent, and nature of published literature on the relationship between AMR and honey bees in the context of climate change and environmental pollutants.The review followed systematic search methods and reporting guidelines. A protocol was developed a priori in consultation with a research librarian. Resulting Boolean search strings were used to search Embase® via Ovid®, MEDLINE®, Scopus®, AGRICOLA™ and Web of Science™ databases. Two independent reviewers conducted two-stage screening on retrieved articles. To be included, the article had to examine honey bees, AMR, and either climate change or environmental pollution. Data, in accordance with Joanna Briggs Institute guidelines, were extracted from relevant articles and descriptively synthesized in tables, figures, and narrative form.A total of 21 articles met the inclusion criteria, with almost half of all articles being published in the last five years (n=10). These articles predominantly investigated hive immunocompetence and multi-drug resistance transporter downregulation (n=10), susceptibility to pests (n=15), especially American foul brood (n=9), and hive product augmentation (n=3).This review identified key themes and gaps in the literature, including the need for future interdisciplinary research to explore the link between AMR and environmental change evidence streams in honey bees. We identified three potential linkages between pollutive and climatic factors and risk of AMR. These interconnections reaffirm the necessity of a One Health framework to tackle global threats and investigate complex issues that extend beyond honey bee research into the public health sector. It is integral that we view these “wicked” problems through an interdisciplinary lens to explore long-term strategies for change.

2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
M Jevtic ◽  
C Bouland

Abstract Public health professionals (PHP) have a dual task in climate change. They should persuade their colleagues in clinical medicine of the importance of all the issues covered by the GD. The fact that the health sector contributes to the overall emissions of 4.4% speaks to the lack of awareness within the health sector itself. The issue of providing adequate infrastructure for the health sector is essential. Strengthening the opportunities and development of the circular economy within healthcare is more than just a current issue. The second task of PHP is targeting the broader population. The public health mission is being implemented, inter alia, through numerous activities related to environmental monitoring and assessment of the impact on health. GD should be a roadmap for priorities and actions in public health, bearing in mind: an ambitious goal of climate neutrality, an insistence on clean, affordable and safe energy, a strategy for a clean and circular economy. GD provides a framework for the development of sustainable and smart transport, the development of green agriculture and policies from field to table. It also insists on biodiversity conservation and protection actions. The pursuit of zero pollution and an environment free of toxic chemicals, as well as incorporating sustainability into all policies, is also an indispensable part of GD. GD represents a leadership step in the global framework towards a healthier future and comprises all the non-EU members as well. The public health sector should consider the GD as an argument for achieving goals at national levels, and align national public health policies with the goals of this document. There is a need for stronger advocacy of health and public-health interests along with incorporating sustainability into all policies. Achieving goals requires the education process for healthcare professionals covering all of topics of climate change, energy and air pollution to a much greater extent than before.


2020 ◽  
Vol 8 (6) ◽  
pp. 885 ◽  
Author(s):  
Emelia H. Adator ◽  
Claudia Narvaez-Bravo ◽  
Rahat Zaheer ◽  
Shaun R. Cook ◽  
Lisa Tymensen ◽  
...  

This study aimed to compare antimicrobial resistance (AMR) in extended-spectrum cephalosporin-resistant and generic Escherichia coli from a One Health continuum of the beef production system in Alberta, Canada. A total of 705 extended-spectrum cephalosporin-resistant E. coli (ESCr) were obtained from: cattle feces (CFeces, n = 382), catch basins (CBasins, n = 137), surrounding streams (SStreams, n = 59), beef processing plants (BProcessing, n = 4), municipal sewage (MSewage; n = 98) and human clinical specimens (CHumans, n = 25). Generic isolates (663) included: CFeces (n = 142), CBasins (n = 185), SStreams (n = 81), BProcessing (n = 159) and MSewage (n = 96). All isolates were screened for antimicrobial susceptibility to 9 antimicrobials and two clavulanic acid combinations. In ESCr, oxytetracycline (87.7%), ampicillin (84.4%) and streptomycin (73.8%) resistance phenotypes were the most common, with source influencing AMR prevalence (p < 0.001). In generic E. coli, oxytetracycline (51.1%), streptomycin (22.6%), ampicillin (22.5%) and sulfisoxazole (14.3%) resistance were most common. Overall, 88.8% of ESCr, and 26.7% of generic isolates exhibited multi-drug resistance (MDR). MDR in ESCr was high from all sources: CFeces (97.1%), MSewage (96.9%), CHumans (96%), BProcessing (100%), CBasins (70.5%) and SStreams (61.4%). MDR in generic E. coli was lower with CFeces (45.1%), CBasins (34.6%), SStreams (23.5%), MSewage (13.6%) and BProcessing (10.7%). ESBL phenotypes were confirmed in 24.7% (n = 174) ESCr and 0.6% of generic E. coli. Prevalence of bla genes in ESCr were blaCTXM (30.1%), blaCTXM-1 (21.6%), blaTEM (20%), blaCTXM-9 (7.9%), blaOXA (3.0%), blaCTXM-2 (6.4%), blaSHV (1.4%) and AmpC β-lactamase blaCMY (81.3%). The lower AMR in ESCr from SStreams and BProcessing and higher AMR in CHumans and CFeces likely reflects antimicrobial use in these environments. Although MDR levels were higher in ESCr as compared to generic E. coli, AMR to the same antimicrobials ranked high in both ESCr and generic E. coli sub-populations. This suggests that both sub-populations reflect similar AMR trends and are equally useful for AMR surveillance. Considering that MDR ESCr MSewage isolates were obtained without enrichment, while those from CFeces were obtained with enrichment, MSewage may serve as a hot spot for MDR emergence and dissemination.


Antibiotics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 346
Author(s):  
Marcello Iriti ◽  
Sara Vitalini ◽  
Elena Maria Varoni

Antimicrobial resistance represents one of the most relevant threats to global public health and food security, affecting anyone, of any age, in any country and is responsible for longer hospital stays, higher medical costs and increased mortality. Resistant microorganisms are present in humans, animals, food and the environment, and, therefore, the One Health approach is very promising to counteract antimicrobial resistance, since human health and animal health are connected to each other and with the environment and the latter a potential source of resistant microorganisms. In this context, the need for novel antimicrobial drugs has stimulated the exploration of plant products as a source of novel phytotherapeutics able to reverse antimicrobial resistance when used in combination with conventional antibiotic drugs.


2019 ◽  
Vol 28 (01) ◽  
pp. 224-231 ◽  
Author(s):  
Alejandro Rodríguez-González ◽  
Massimiliano Zanin ◽  
Ernestina Menasalvas-Ruiz

Objectives: To provide an oveiview of the current application of artificial intelligence (AI) in the field of public health and epidemiology, with a special focus on antimicrobial resistance and the impact of climate change in disease epidemiology. Both topics are of vital importance and were included in the “Ten threats to global health in 2019“ report published by the World Health Organization. Methods: We analysed publications that appeared in the last two years, between January 2017 and October 2018. Papers were searched using Google Scholar with the following keywords: public health, epidemiology, machine learning, data analytics, artificial intelligence, disease surveillance, climate change, antimicrobial resistance, and combinations thereof. Selected articles were organised by theme. Results: In spite of a large interest in AI generated both within and outside the scientific community, and of the many opinions pointing towards the importance of a better use of data in public health, few papers have been published on the selected topics in the last two years. We identify several potential reasons, including the complexity of the integration of heterogeneous data, and the lack of sound and unbiased validation procedures. Conclusions: As there is a better comprehension of AI and more funding available, artificial intelligence will become not only the centre of attention in informatics, but more importantly the source of innovative solutions for public health.


Author(s):  
Maria Luisa Medina-Pizzali ◽  
Stella M. Hartinger ◽  
Gabriela Salmon-Mulanovich ◽  
Anika Larson ◽  
Maribel Riveros ◽  
...  

Antimicrobial resistance (AMR) in rural Latin America is not fully understood. The transmission pathways are partially known since research predominantly focuses on the urban hospital setting. The contribution to AMR from environmental factors is usually only mentioned in large-scale animal production. To understand the state of the literature on AMR in rural LA, we carried out a scoping review using the One Health (OH) perspective. OH recognises the concomitant contributions and interconnectedness of humans, animal, and the environment, thus, we used the OH perspective to select those articles adopting a holistic view of the problem. We searched original articles in English, Spanish, and Portuguese in four peer-reviewed databases and included 21 publications in the analysis. We charted data on bibliometrics, design, data collection sources, and instruments. We identified the human, animal, and environmental contributions to AMR in rural locations, and information gaps on AMR transmission routes and AMR drivers. Intensive and non-intensive animal production systems and agricultural practices were the most frequently found human contributions to AMR. Poultry, swine, cattle, and fish were the most frequent livestock mentioned as sources of AMR bacteria. Animal carriage and/or transfer of AMR determinants or bacteria was recognised as the primary contribution of livestock to the problem, while water, soil, and farming were predominant environmental contributions. We found that only 1 article out of 21 considered the OH approach as a framework for their sampling scheme, whereas 5 out 21 discussed all the three OH components. There were hardly any descriptions of humans or human waste as reservoirs for AMR in rural locations, and rural health centres or hospitals and wildlife were not represented. No studies identified mining as an anthropogenic activity driving AMR. More OH-oriented studies, with emphasis on molecular approaches—for identification and comparison of AMR genes—are sorely needed to understand better the existence of a network of interconnected transmission routes in rural Latin America and provide efficient strategies to prevent further AMR emergence.


Author(s):  
Terzulum Gwaza

The emergence of antimicrobial resistance amongst pathogenic microorganisms is a worrying public health issue which needs urgent fix. Several attempts have been made to overcome this problem, most recently, the advent of broad spectrum antimicrobial agents have been one of them. In as much, antimicrobial resistance seems to persist amongst different pathogenic genera due to inappropriate use of antibiotics. Salmonella, a causative agent of typhoid and other human systemic complications have displayed multi-drug resistance to antimicrobial agents. This research work therefore aims at investigating the antimicrobial sensitivity of Salmonella species isolated from University of Mkar students. A total of 50 stool samples were collected in sterile sample containers and isolation of Salmonella was carried out using two classical selective media, Salmonella Shigella Agar and MacConkey Agar. In-vitro antimicrobial sensitivity test was carried out following the disk diffusion method using 10 antimicrobial agents. Salmonella species displayed high rate of resistance (70%) while showing a worrying low rate susceptibility (30%) to Aminoglycosides, Antifolates and even broad spectrum Fluoroquinolones. Salmonella may have adapted, or acquired resistance inherently as it was evident in very high resistance against common antimicrobial agents like Ampicillin, Co-trimoxazole, Augmentin, and Nalidixic acid. The misuse of antibiotics and therapeutics by the population is obviously the consequential factor for the acquisition of resistance among this genus. Therefore, appropriate drug administration and usage practices must be enforced by government and public health institutions to help curtail the danger of unleashing the post-antibiotic era upon us now, and in time to come.


Sign in / Sign up

Export Citation Format

Share Document