scholarly journals Shifting gradients of macroscale cortical organization mark the transition from childhood to adolescence

2020 ◽  
Author(s):  
Hao-Ming Dong ◽  
Daniel S. Margulies ◽  
Xi-Nian Zuo ◽  
Avram J. Holmes

AbstractThe transition from childhood to adolescence is marked by pronounced shifts in brain structure and function that coincide with the development of physical, cognitive, and social abilities. Prior work in adult populations has characterized the topographical organization of cortex, revealing macroscale functional gradients that extend from unimodal (somato/motor and visual) regions through the cortical association areas that underpin complex cognition in humans. However, the presence of these core functional gradients across development as well as their maturational course have yet to be established. Here, leveraging 378 resting-state fMRI scans from 190 healthy individuals aged 6-17 years, we demonstrate that the transition from childhood to adolescence is reflected in the gradual maturation of gradient patterns across the cortical sheet. In children, the overarching organizational gradient is anchored within unimodal cortex, between somato/motor and visual territories. Conversely, in adolescence the principal gradient of connectivity transitions into an adult-like spatial framework, with the default network at the opposite end of a spectrum from primary sensory and motor regions. The observed gradient transitions are gradually refined with age, reaching a sharp inflection point in 13- and 14-year-olds. Functional maturation was nonuniformly distributed across cortical networks. Unimodal networks reached their mature positions early in development, while association regions, in particular medial prefrontal cortex, reached a later peak during adolescence. These data reveal age-dependent changes in the macroscale organization of cortex and suggest the scheduled maturation of functional gradient patterns may be critically important for understanding how cognitive and behavioral capabilities are refined across development.SignificanceHuman abilities and behavior change dramatically across development, emerging from a cascade of hierarchical changes in brain circuitry. Here, we describe age-dependent shifts in the macroscale functional organization of cortex in childhood and adolescence. The characterization of functional connectivity patterns in children revealed an overarching organizational framework anchored within unimodal cortex, between somato/motor and visual regions. Conversely, in adolescents we observed a transition into an adult-like gradient that situates the default network at the opposite end of a spectrum from primary sensory and motor regions. This spatial framework emerged gradually with age, reaching a sharp inflection point at the transition from childhood to adolescence. These data reveal the presence of a developmental change from a functional motif first dominated by the distinction between sensory and motor systems, and then balanced through interactions with later-maturing aspects of association cortex that support more abstract cognitive functions.

2014 ◽  
Vol 26 (3) ◽  
pp. 501-513 ◽  
Author(s):  
Xiaoqian J. Chai ◽  
Noa Ofen ◽  
John D. E. Gabrieli ◽  
Susan Whitfield-Gabrieli

We examined the normal development of intrinsic functional connectivity of the default network (brain regions typically deactivated for attention-demanding tasks) as measured by resting-state fMRI in children, adolescents, and young adults ages 8–24 years. We investigated both positive and negative correlations and employed analysis methods that allowed for valid interpretation of negative correlations and that also minimized the influence of motion artifacts that are often confounds in developmental neuroimaging. As age increased, there were robust developmental increases in negative correlations, including those between medial pFC (MPFC) and dorsolateral pFC (DLPFC) and between lateral parietal cortices and brain regions associated with the dorsal attention network. Between multiple regions, these correlations reversed from being positive in children to negative in adults. Age-related changes in positive correlations within the default network were below statistical threshold after controlling for motion. Given evidence in adults that greater negative correlation between MPFC and DLPFC is associated with superior cognitive performance, the development of an intrinsic anticorrelation between MPFC and DLPFC may be a marker of the large growth of working memory and executive functions that occurs from childhood to young adulthood.


NeuroImage ◽  
2021 ◽  
Vol 226 ◽  
pp. 117581
Author(s):  
Fengmei Fan ◽  
Xuhong Liao ◽  
Tianyuan Lei ◽  
Tengda Zhao ◽  
Mingrui Xia ◽  
...  

Author(s):  
Leo Sher

Abstract Adolescent suicide research has mostly focused on demographic risk factors. Such studies focus on who is at risk, but do not explain why certain adolescents are at risk for suicide. Studies of the neurobiology of adolescent suicide could clarify why some youths are more suicidal than others and help to find biological markers of suicidal behavior in teenagers. Over the past decade the role of brain-derived neurotrophic factor (BDNF) in the pathophysiology of suicidal behavior has attracted significant attention of scientists. BDNF is involved in the pathophysiology of many psychiatric disorders associated with suicidal behavior including depression, post-traumatic stress disorder, schizophrenia, and obsessive-compulsive disorder. BDNF dysregulation could be associated with increased suicidality independently of psychiatric diagnoses. BDNF plays an important role in the regulation and growth of neurons during childhood and adolescence. Prominent among the brain regions undergoing developmental change during adolescence are stressor-sensitive areas. The serotonin dysfunction found in adolescent and adult suicidal behavior could be related to the low level of BDNF, which impedes the normal development of serotonin neurons during brain development. BDNF dysfunction could play a more significant role in the pathophysiology of psychiatric disorders and suicidal behavior in adolescents than in adults. Treatment-induced enhancement in the BDNF function could reduce suicidal behavior secondary to the improvement in psychiatric pathology or independently of improvement in psychiatric disorders. It is interesting to hypothesize that BDNF could be a biological marker of suicidal behavior in adolescents or in certain adolescent populations.


2018 ◽  
Author(s):  
Rodrigo M. Braga ◽  
Koene R. A. Van Dijk ◽  
Jonathan R. Polimeni ◽  
Mark C. Eldaief ◽  
Randy L. Buckner

Examination of large-scale distributed networks within the individual reveals details of cortical network organization that are absent in group-averaged studies. One recent discovery is that a distributed transmodal network, often referred to as the ‘default network’, is comprised of two separate but closely interdigitated networks, only one of which is coupled to posterior parahippocampal cortex. Not all studies of individuals have identified the same networks and questions remain about the degree to which the two networks are separate, particularly within regions hypothesized to be interconnected hubs. Here we replicate the observation of network separation across analytical (seed-based connectivity and parcellation) and data projection (volume and surface) methods in 2 individuals each scanned 31 times. Additionally, 3 individuals were examined with high-resolution fMRI to gain further insight into the anatomical details. The two networks were identified with separate regions localized to adjacent portions of the cortical ribbon, sometimes inside the same sulcus. Midline regions previously implicated as hubs revealed near complete spatial separation of the two networks, displaying a complex spatial topography in the posterior cingulate and precuneus. The network coupled to parahippocampal cortex also revealed a separate region directly within the hippocampus at or near the subiculum. These collective results support that the default network is composed of at least two spatially juxtaposed networks. Fine spatial details and juxta-positions of the two networks can be identified within individuals at high resolution, providing insight into the network organization of association cortex and placing further constraints on interpretation of group-averaged neuroimaging data.


2019 ◽  
Author(s):  
Jin Li ◽  
David E. Osher ◽  
Heather A. Hansen ◽  
Zeynep M. Saygin

AbstractWhat determines the functional organization of cortex? One hypothesis is that innate connectivity patterns set up a scaffold upon which functional specialization can later take place. We tested this hypothesis by asking whether the visual word form area (VWFA), an experience-driven region, was already connected to proto language networks in neonates scanned within one week of birth. With resting-state fMRI, we found that neonates showed adult-like functional connectivity, and observed that i) language regions connected more strongly with the putative VWFA than other adjacent ventral visual regions that also show foveal bias, and ii) the VWFA connected more strongly with frontotemporal language regions than with regions adjacent to these language regions. These data suggest that the location of the VWFA is earmarked at birth due to its connectivity with the language network, providing evidence that innate connectivity instructs the later refinement of cortex.


2018 ◽  
Author(s):  
Kathryn L. Mills ◽  
Christian K. Tamnes

The development of the human brain involves a prolonged course of maturation, enabling us to learn to navigate our complex social environments. Here, we give short introductions to post-mortem and animal studies on postnatal brain development and selected methodological considerations for longitudinal developmental neuroimaging. We then describe typical developmental changes in brain structure and function from childhood to adulthood. We focus on measurements derived from magnetic resonance imaging (MRI) and on longitudinal data. Specifically, we discuss brain structural development based on morphometry and diffusion tensor imaging (DTI) studies, and functional development based on resting-state and task-based functional MRI. Finally, we highlight selected current overarching research questions and argue that an important step in answering these questions is to study individual differences in longitudinal brain development.


2013 ◽  
Vol 25 (7) ◽  
pp. 1163-1179 ◽  
Author(s):  
Willem Huijbers ◽  
Aaron P. Schultz ◽  
Patrizia Vannini ◽  
Donald G. McLaren ◽  
Sarah E. Wigman ◽  
...  

fMRI studies have linked the posteromedial cortex to episodic learning (encoding) and remembering (retrieval) processes. The posteromedial cortex is considered part of the default network and tends to deactivate during encoding but activate during retrieval, a pattern known as the encoding/retrieval flip. Yet, the exact relationship between the neural correlates of memory performance (hit/miss) and memory stage (encoding/retrieval) and the extent of overlap with intrinsic cortical networks remains to be elucidated. Using task-based fMRI, we isolated the pattern of activity associated with memory performance, memory stage, and the interaction between both. Using resting-state fMRI, we identified which intrinsic large-scale functional networks overlapped with regions showing task-induced effects. Our results demonstrated an effect of successful memory performance in regions associated with the control network and an effect of unsuccessful memory performance in the ventral attention network. We found an effect of memory retrieval in brain regions that span the default and control networks. Finally, we found an interaction between memory performance and memory stage in brain regions associated with the default network, including the posteromedial cortex, posterior parietal cortex, and parahippocampal cortex. We discuss these findings in relation to the encoding/retrieval flip. In general, the findings demonstrate that task-induced effects cut across intrinsic cortical networks. Furthermore, regions within the default network display functional dissociations, and this may have implications for the neural underpinnings of age-related memory disorders.


Sign in / Sign up

Export Citation Format

Share Document