scholarly journals Transient genomic instability drives tumorigenesis through accelerated clonal evolution

2020 ◽  
Author(s):  
Ofer Shoshani ◽  
Bjorn Bakker ◽  
Yin Wang ◽  
Dong Hyun Kim ◽  
Marcus Maldonado ◽  
...  

AbstractAbnormal numerical and structural chromosome content is frequently found in human cancer. To test the role of aneuploidy in tumor initiation and progression, we compared tumor development in mice with chronic chromosome instability (CIN) induced by inactivation of the spindle assembly checkpoint (produced by Mad2 deficiency) and mice with transient CIN through transiently increased expression of polo-like kinase 4 (PLK4), a master regulator of centrosome number. Tumors forming under chronic CIN gradually trended toward chromosomal gains producing a specific karyotype profile that could only be partially maintained in end-stage tumors, as determined by single-cell whole genome DNA sequencing. Short term CIN from transient PLK4 induction generated significant centrosome amplification and aneuploidy resulting in formation of aggressive T cell lymphomas in mice with heterozygous inactivation of one p53 allele or accelerated tumor development in the absence of p53. Transient CIN increased the frequency of lymphomainitiating cells (as revealed by T cell receptor sequencing) with a specific karyotype profile containing triploid chromosomes 4, 5, 14, and 15 occurring early in tumorigenesis. Overall, our evidence demonstrates that distinct CIN mechanisms drive cancers presenting specific, complex chromosomal alterations with transient CIN rapidly enhancing tumor formation by accelerating the generation of such events.

Blood ◽  
2008 ◽  
Vol 111 (1) ◽  
pp. 344-350 ◽  
Author(s):  
Katherine Bessette ◽  
Mark L. Lang ◽  
Roy A. Fava ◽  
Martin Grundy ◽  
Jennifer Heinen ◽  
...  

Stat5 proteins are critical signaling molecules activated by many cytokines. Within the immune system, Stat5 plays important roles related to the development of thymocytes and proliferation of T cells. Stat5 has been implicated in malignant transformation, and moreover, the activated tyrosine phosphorylated form of Stat5 is frequently observed in human lymphomas. We previously demonstrated the oncogenic potential of Stat5, with thymic lymphoblastic lymphomas developing in a significant proportion of transgenic (TG) mice overexpressing Stat5a or Stat5b in lymphocytes. In addition, immunization or expression of a T-cell receptor (TCR) transgene augmented the rate of tumor formation. Here, we investigate the mechanism of Stat5-mediated lymphomagenesis by exploring the contributions of major histocompatibility complex (MHC)/TCR and pre-TCR signals. We present data demonstrating that Stat5b TG mice unexpectedly develop CD8+ lymphoma even in the absence of either pre-TCR signaling or normal thymic selection. Indeed, acceleration of Stat5b transgene-mediated lymphoma occurred on TCRα−/− and pre-TCRα−/− backgrounds. In light of these data, we propose a model in which alterations in T-cell development at the double-negative/double-positive (DN/DP) stages cooperate with cytokine-mediated pathways in immature thymocytes to give rise to lymphoblastic T-cell lymphomas in Stat5b TG mice.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 340
Author(s):  
Ming Liang Oon ◽  
Jing Quan Lim ◽  
Bernett Lee ◽  
Sai Mun Leong ◽  
Gwyneth Shook-Ting Soon ◽  
...  

T-cell lymphomas arise from a single neoplastic clone and exhibit identical patterns of deletions in T-cell receptor (TCR) genes. Whole genome sequencing (WGS) data represent a treasure trove of information for the development of novel clinical applications. However, the use of WGS to identify clonal T-cell proliferations has not been systematically studied. In this study, based on WGS data, we identified monoclonal rearrangements (MRs) of T-cell receptors (TCR) genes using a novel segmentation algorithm and copy number computation. We evaluated the feasibility of this technique as a marker of T-cell clonality using T-cell lymphomas (TCL, n = 44) and extranodal NK/T-cell lymphomas (ENKTLs, n = 20), and identified 98% of TCLs with one or more TCR gene MRs, against 91% detected using PCR. TCR MRs were absent in all ENKTLs and NK cell lines. Sensitivity-wise, this platform is sufficiently competent, with MRs detected in the majority of samples with tumor content under 25% and it can also distinguish monoallelic from biallelic MRs. Understanding the copy number landscape of TCR using WGS data may engender new diagnostic applications in hematolymphoid pathology, which can be readily adapted to the analysis of B-cell receptor loci for B-cell clonality determination.


2008 ◽  
Vol 49 (2) ◽  
pp. 237-246 ◽  
Author(s):  
Christian SchüTzinger ◽  
Harald Esterbauer ◽  
Gregor Hron ◽  
Cathrin Skrabs ◽  
Martin Uffmann ◽  
...  

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 28-29
Author(s):  
Jie Wang ◽  
Katarzyna Urbanska ◽  
Prannda Sharma ◽  
Mathilde Poussin ◽  
Reza Nejati ◽  
...  

Background: Peripheral T-cell lymphomas (PTCL) encompass a highly heterogeneous group of T-cell malignancies and are generally associated with a poor prognosis. Combination chemotherapy results in consistently poorer outcomes for T-cell lymphomas compared with B-cell lymphomas.1 There is an urgent clinical need to develop novel approaches to treatment of PTCL. While CD19- and CD20-directed immunotherapies have been successful in the treatment of B-cell malignancies, T-cell malignancies lack suitable immunotherapeutic targets. Brentuximab Vedotin, a CD30 antibody-drug conjugate, is not applicable to PTCL subtypes which do not express CD30.2 Broadly targeting pan-T cell markers is predicted to result in extensive T-cell depletion and clinically significant immune deficiency; therefore, a more tumor-specific antigen that primarily targets the malignant T-cell clone is needed. We reasoned that since malignant T cells are clonal and express the same T-cell receptor (TCR) in a given patient, and since the TCR β chain in human α/β TCRs can be grouped into 24 functional Vβ families targetable by monoclonal antibodies, immunotherapeutic targeting of TCR Vβ families would be an attractive strategy for the treatment of T-cell malignancies. Methods: We developed a flexible approach for targeting TCR Vβ families by engineering T cells to express a CD64 chimeric immune receptor (CD64-CIR), comprising a CD3ζ T cell signaling endodomain, CD28 costimulatory domain, and the high-affinity Fc gamma receptor I, CD64. T cells expressing CD64-CIR are predicted to be directed to tumor cells by Vβ-specific monoclonal antibodies that target tumor cell TCR, leading to T cell activation and induction of tumor cell death by T cell-mediated cytotoxicity. Results: This concept was first evaluated in vitro using cell lines. SupT1 T-cell lymphoblasts, which do not express a native functioning TCR, were stably transduced to express a Vβ12+ MART-1 specific TCR, resulting in a Vβ12 TCR expressing target T cell line.3 Vβ family specific cytolysis was confirmed by chromium release assays using co-culture of CD64 CIR transduced T cells with the engineered SupT1-Vβ12 cell line in the presence of Vβ12 monoclonal antibody. Percent specific lysis was calculated as (experimental - spontaneous lysis / maximal - spontaneous lysis) x 100. Controls using no antibody, Vβ8 antibody, and untransduced T cells did not show significant cytolysis (figure A). Next, the Jurkat T cell leukemic cell line, which expresses a native Vβ8 TCR, was used as targets in co-culture. Again, Vβ family target specific cytolysis was achieved in the presence of CD64 CIR T cells and Vβ8, but not Vβ12 control antibody. Having demonstrated Vβ family specific cytolysis in vitro using target T cell lines, we next evaluated TCR Vβ family targeting in vivo. Immunodeficient mice were injected with SupT1-Vβ12 or Jurkat T cells with the appropriate targeting Vβ antibody, and either CD64 CIR T cells or control untransduced T cells. The cell lines were transfected with firefly luciferase and tumor growth was measured by bioluminescence. The CD64 CIR T cells, but not untransduced T cells, in conjunction with the appropriate Vβ antibody, successfully controlled tumor growth (figure B). Our results provide proof-of-concept that TCR Vβ family specific T cell-mediated cytolysis is feasible, and informs the development of novel immunotherapies that target TCR Vβ families in T-cell malignancies. Unlike approaches that target pan-T cell antigens, this approach is not expected to cause substantial immune deficiency and could lead to a significant advance in the treatment of T-cell malignancies including PTCL. References 1. Coiffier B, Brousse N, Peuchmaur M, et al. Peripheral T-cell lymphomas have a worse prognosis than B-cell lymphomas: a prospective study of 361 immunophenotyped patients treated with the LNH-84 regimen. The GELA (Groupe d'Etude des Lymphomes Agressives). Ann Oncol Off J Eur Soc Med Oncol. 1990;1(1):45-50. 2. Horwitz SM, Advani RH, Bartlett NL, et al. Objective responses in relapsed T-cell lymphomas with single agent brentuximab vedotin. Blood. 2014;123(20):3095-3100. 3. Hughes MS, Yu YYL, Dudley ME, et al. Transfer of a TCR Gene Derived from a Patient with a Marked Antitumor Response Conveys Highly Active T-Cell Effector Functions. Hum Gene Ther. 2005;16(4):457-472. Figure Disclosures Schuster: Novartis, Genentech, Inc./ F. Hoffmann-La Roche: Research Funding; AlloGene, AstraZeneca, BeiGene, Genentech, Inc./ F. Hoffmann-La Roche, Juno/Celgene, Loxo Oncology, Nordic Nanovector, Novartis, Tessa Therapeutics: Consultancy, Honoraria.


2020 ◽  
Author(s):  
Jelena Milosevic ◽  
Susanne Fransson ◽  
Miklos Gulyas ◽  
Gabriel Gallo-Oller ◽  
Thale K Olsen ◽  
...  

SUMMARYMajority of cancers harbor alterations of the tumor suppressor TP53. However, childhood cancers, including unfavorable neuroblastoma, often lack TP53 mutations despite frequent loss of p53 function, suggesting alternative p53 inactivating mechanisms.Here we show that p53-regulating PPM1D at chromosome 17q22.3 is linked to aggressive tumors and poor prognosis in neuroblastoma. We identified that WIP1-phosphatase encoded by PPM1D, is activated by frequent segmental 17q-gain further accumulated during clonal evolution, gene-amplifications, gene-fusions or gain-of-function somatic and germline mutations. Pharmacological and genetic manipulation established WIP1 as a druggable target in neuroblastoma. Genome-scale CRISPR-Cas9 screening demonstrated PPM1D genetic dependency in TP53 wild-type neuroblastoma cell lines, and shRNA PPM1D knockdown significantly delayed in vivo tumor formation. Establishing a transgenic mouse model overexpressing PPM1D showed that these mice develop cancers phenotypically and genetically similar to tumors arising in mice with dysfunctional p53 when subjected to low-dose irradiation. Tumors include T-cell lymphomas harboring Notch1-mutations, Pten-deletions and p53-accumulation, adenocarcinomas and PHOX2B-expressing neuroblastomas establishing PPM1D as a bona fide oncogene in wtTP53 cancer and childhood neuroblastoma. Pharmacological inhibition of WIP1 suppressed the growth of neural tumors in nude mice proposing WIP1 as a therapeutic target in neural childhood tumors.


2003 ◽  
Vol 77 (3) ◽  
pp. 2056-2062 ◽  
Author(s):  
Rachel Kim ◽  
Alla Trubetskoy ◽  
Takeshi Suzuki ◽  
Nancy A. Jenkins ◽  
Neal G. Copeland ◽  
...  

ABSTRACT The identification of tumor-inducing genes is a driving force for elucidating the molecular mechanisms underlying cancer. Many retroviruses induce tumors by insertion of viral DNA adjacent to cellular oncogenes, resulting in altered expression and/or structure of the encoded proteins. The availability of the mouse genome sequence now allows analysis of retroviral common integration sites in murine tumors to be used as a genetic screen for identification of large numbers of candidate cancer genes. By positioning the sequences of inverse PCR-amplified, virus-host junction fragments within the mouse genome, 19 target genes were identified in T-cell lymphomas induced by the retrovirus SL3-3. The candidate cancer genes included transcription factors (Fos, Gfi1, Lef1, Myb, Myc, Runx3, and Sox3), all three D cyclins, Ras signaling pathway components (Rras2/TC21 and Rasgrp1), and Cmkbr7/CCR7. The most frequent target was Rras2. Insertions as far as 57 kb away from the transcribed portion were associated with substantially increased transcription of Rras2, and no coding sequence mutations, including those typically involved in Ras activation, were detected. These studies demonstrate the power of genome-based analysis of retroviral insertion sites for cancer gene discovery, identify several new genes worth examining for a role in human cancer, and implicate the pathways in which those genes act in lymphomagenesis. They also provide strong genetic evidence that overexpression of unmutated Rras2 contributes to tumorigenesis, thus suggesting that it may also do so if it is inappropriately expressed in human tumors.


Blood ◽  
2013 ◽  
Vol 121 (25) ◽  
pp. 4997-5005 ◽  
Author(s):  
Eric Tse ◽  
Yok-Lam Kwong

Abstract Natural killer (NK)/T-cell lymphomas and NK-cell leukemias are aggressive malignancies. Occurring worldwide, they show a predilection for Asian and South American populations. Neoplastic cells are surface CD3−, cytoplasmic CD3ε+, CD56+, cytotoxic-molecule positive, Epstein-Barr virus (EBV) positive, with germline T-cell receptor gene. Lymphomas occur commonly in the nasal and upper aerodigestive region. Occasional cases present in the skin, salivary gland, testis, and gastrointestinal tract. Rare cases are disseminated with lymphadenopathy, hepatosplenomegaly, and a leukemic phase. Positron emission tomography computed tomography is useful in staging, as lymphomas are 18-fluorodeoxyglucose avid. Quantification of circulating EBV DNA is an accurate biomarker of tumor load. Nasal NK/T-cell lymphomas present mostly with stage I/II disease. Concomitant/sequential chemotherapy and radiotherapy is standard treatment. Radiotherapy alone is inadequate because of high systemic failure rate. For stage III/IV nasal, nonnasal, and disseminated lymphomas, systemic chemotherapy is indicated. Regimens containing l-asparaginase and drugs unaffected by P-glycoprotein are most effective. Hematopoietic stem cell transplantation (HSCT) is not indicated for early-stage nasal lymphomas. HSCT for lymphomas not in remission has poor results. In advanced-stage nasal, nonnasal, disseminated, or relapsed lymphomas, HSCT may be considered when remission is achieved. Prognostic modeling and EBV DNA monitoring may be useful in risk stratification for HSCT.


Sign in / Sign up

Export Citation Format

Share Document