scholarly journals The pan-cancer lncRNA PLANE regulates an alternative splicing program to promote cancer pathogenesis

2020 ◽  
Author(s):  
Liu Teng ◽  
Yu Chen Feng ◽  
Su Tang Guo ◽  
Pei Lin Wang ◽  
Shi Xing Wang ◽  
...  

ABSTRACTGenomic amplification of the distal portion of chromosome 3q, which encodes a number of oncogenic proteins, is one of the most frequent chromosomal abnormalities in malignancy. Here we functionally characterise a non-protein product of the 3q region, the long noncoding RNA (lncRNA) PLANE, which is upregulated in diverse cancer types through copy number gain as well as E2F1-mediated transcriptional activation. PLANE forms an RNA-RNA duplex with the nuclear receptor co-repressor 2 (NCOR2) pre-mRNA at intron 45, binds to heterogeneous ribonucleoprotein M (hnRNPM) and facilitates the association of hnRNPM with the intron, thus leading to repression of the alternative splicing (AS) event generating NCOR2-202, a major protein-coding NCOR2 AS variant. In consequence, PLANE promotes cancer cell proliferation and tumorigenicity and its upregulation is associated with poor patient outcomes. These results uncover the function and regulation of PLANE and suggest that PLANE may constitute a therapeutic target in the pan-cancer context.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Liu Teng ◽  
Yu Chen Feng ◽  
Su Tang Guo ◽  
Pei Lin Wang ◽  
Teng Fei Qi ◽  
...  

AbstractGenomic amplification of the distal portion of chromosome 3q, which encodes a number of oncogenic proteins, is one of the most frequent chromosomal abnormalities in malignancy. Here we functionally characterise a non-protein product of the 3q region, the long noncoding RNA (lncRNA) PLANE, which is upregulated in diverse cancer types through copy number gain as well as E2F1-mediated transcriptional activation. PLANE forms an RNA-RNA duplex with the nuclear receptor co-repressor 2 (NCOR2) pre-mRNA at intron 45, binds to heterogeneous ribonucleoprotein M (hnRNPM) and facilitates the association of hnRNPM with the intron, thus leading to repression of the alternative splicing (AS) event generating NCOR2-202, a major protein-coding NCOR2 AS variant. This is, at least in part, responsible for PLANE-mediated promotion of cancer cell proliferation and tumorigenicity. These results uncover the function and regulation of PLANE and suggest that PLANE may constitute a therapeutic target in the pan-cancer context.


2020 ◽  
Author(s):  
Liu Teng ◽  
Yu Chen Feng ◽  
Su Tang Guo ◽  
Pei Lin Wang ◽  
Shi Xing Wang ◽  
...  

Abstract Genomic amplification of the distal portion of chromosome 3q, which encodes a number of oncogenic proteins, is one of the most frequent chromosomal abnormalities in malignancy. Here we functionally characterise a non-protein product of the 3q region, the long noncoding RNA (lncRNA) PLANE, which is upregulated in diverse cancer types through copy number gain as well as E2F1-mediated transcriptional activation. PLANE forms an RNA-RNA duplex with the nuclear receptor co-repressor 2 (NCOR2) pre-mRNA at intron 45, binds to heterogeneous ribonucleoprotein M (hnRNPM) and facilitates the association of hnRNPM with the intron, thus leading to repression of the alternative splicing (AS) event generating NCOR2-202, a major protein-coding NCOR2 AS variant. In consequence, PLANE promotes cancer cell proliferation and tumorigenicity and its upregulation is associated with poor patient outcomes. These results uncover the function and regulation of PLANE and suggest that PLANE may constitute a therapeutic target in the pan-cancer context.


2020 ◽  
Vol 13 (S10) ◽  
Author(s):  
Vo-Minh-Hoang Bui ◽  
Clément Mettling ◽  
Jonathan Jou ◽  
H. Sunny Sun

Abstract Background Colorectal carcinoma (CRC) is the third most common cancer in the world and also the third leading cause of cancer-related mortality in Taiwan. CRC tumorigenesis is a multistep process, starting from mutations causing loss of function of tumor suppressor genes, canonically demonstrated in adenomatous polyposis coli pathogenesis. Although many genes or chromosomal alterations have been shown to be involved in this process, there are still unrecognized molecular events within CRC tumorigenesis. Elucidating these mechanisms may help improve the management and treatment. Methods In this study, we aimed to identify copy number alteration of the smallest chromosomal regions that is significantly associated with sporadic CRC tumorigenesis using high-resolution array-based Comparative Genomic Hybridization (aCGH) and quantitative Polymerase chain reaction (qPCR). In addition, microsatellite instability assay and sequencing-based mutation assay were performed to illustrate the initiation event of CRC tumorigenesis. Results A total of 571 CRC patients were recruited and 377 paired CRC tissues from sporadic CRC cases were used to define the smallest regions with chromosome copy number changes. In addition, 198 colorectal polyps from 160 patients were also used to study the role of 20q13.33 gain in CRC tumorigenesis. We found that gain in 20q13.33 is the main chromosomal abnormalities in this patient population and counts 50.9 and 62.8% in CRC and colon polyps, respectively. Furthermore, APC and KRAS gene mutations were profiled simultaneously and co-analyzed with microsatellite instability and 20q13.33 gain in CRC patients. Our study showed that the frequency of 20q13.33 copy number gain was highest among all reported CRC mutations. Conclusion As APC or KRAS mutations are currently identified as the most important targets for CRC therapy, this study proposes that 20q13.33 copy number gain and the associated chromosomal genes function as promising biomarkers for both early stage detection and targeted therapy of sporadic CRCs in the future.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Chen Feng ◽  
Xiao Ying Liu ◽  
Liu Teng ◽  
Qiang Ji ◽  
Yongyan Wu ◽  
...  

Abstract The functions of the proto-oncoprotein c-Myc and the tumor suppressor p53 in controlling cell survival and proliferation are inextricably linked as “Yin and Yang” partners in normal cells to maintain tissue homeostasis: c-Myc induces the expression of ARF tumor suppressor (p14ARF in human and p19ARF in mouse) that binds to and inhibits mouse double minute 2 homolog (MDM2) leading to p53 activation, whereas p53 suppresses c-Myc through a combination of mechanisms involving transcriptional inactivation and microRNA-mediated repression. Nonetheless, the regulatory interactions between c-Myc and p53 are not retained by cancer cells as is evident from the often-imbalanced expression of c-Myc over wildtype p53. Although p53 repression in cancer cells is frequently associated with the loss of ARF, we disclose here an alternate mechanism whereby c-Myc inactivates p53 through the actions of the c-Myc-Inducible Long noncoding RNA Inactivating P53 (MILIP). MILIP functions to promote p53 polyubiquitination and turnover by reducing p53 SUMOylation through suppressing tripartite-motif family-like 2 (TRIML2). MILIP upregulation is observed amongst diverse cancer types and is shown to support cell survival, division and tumourigenicity. Thus our results uncover an inhibitory axis targeting p53 through a pan-cancer expressed RNA accomplice that links c-Myc to suppression of p53.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 759
Author(s):  
Zhongjing Su ◽  
Guangyu Liu ◽  
Bin Zhang ◽  
Ze Lin ◽  
Dongyang Huang

The leukocyte common antigen CD45 is a transmembrane phosphatase expressed on all nucleated hemopoietic cells, and the expression levels of its splicing isoforms are closely related to the development and function of lymphocytes. PEBP1P3 is a natural antisense transcript from the opposite strand of CD45 intron 2 and is predicted to be a noncoding RNA. The genotype-tissue expression and quantitative PCR data suggested that PEBP1P3 might be involved in the regulation of expression of CD45 splicing isoforms. To explore the regulatory mechanism of PEBP1P3 in CD45 expression, DNA methylation and histone modification were detected by bisulfate sequencing PCR and chromatin immunoprecipitation assays, respectively. The results showed that after the antisense RNA PEBP1P3 was knocked down by RNA interference, the DNA methylation of CD45 intron 2 was decreased and histone H3K9 and H3K36 trimethylation at the alternative splicing exons of CD45 DNA was increased. Knockdown of PEBP1P3 also increased the binding levels of chromatin conformation organizer CTCF at intron 2 and the alternative splicing exons of CD45. The present results indicate that the natural antisense RNA PEBP1P3 regulated the alternative splicing of CD45 RNA, and that might be correlated with the regulation of histone modification and DNA methylation.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Feifei Zhang ◽  
Hui Wang ◽  
Jiang Yu ◽  
Xueqing Yao ◽  
Shibin Yang ◽  
...  

AbstractDe novo and acquired resistance, which are mainly mediated by genetic alterations, are barriers to effective routine chemotherapy. However, the mechanisms underlying gastric cancer (GC) resistance to chemotherapy are still unclear. We showed that the long noncoding RNA CRNDE was related to the chemosensitivity of GC in clinical samples and a PDX model. CRNDE was decreased and inhibited autophagy flux in chemoresistant GC cells. CRNDE directly bound to splicing protein SRSF6 to reduce its protein stability and thus regulate alternative splicing (AS) events. We determined that SRSF6 regulated the PICALM exon 14 skip splice variant and triggered a significant S-to-L isoform switch, which contributed to the expression of the long isoform of PICALM (encoding PICALML). Collectively, our findings reveal the key role of CRNDE in autophagy regulation, highlighting the significance of CRNDE as a potential prognostic marker and therapeutic target against chemoresistance in GC.


2021 ◽  
Vol 22 (6) ◽  
pp. 2831
Author(s):  
Ryan Bensen ◽  
John Brognard

Squamous cell carcinomas of the lung, head and neck, esophagus, and cervix account for more than two million cases of cancer per year worldwide with very few targetable therapies available and minimal clinical improvement in the past three decades. Although these carcinomas are differentiated anatomically, their genetic landscape shares numerous common genetic alterations. Amplification of the third chromosome’s distal portion (3q) is a distinguishing genetic alteration in most of these carcinomas and leads to copy-number gain and amplification of numerous oncogenic proteins. This area of the chromosome harbors known oncogenes involved in squamous cell fate decisions and differentiation, including TP63, SOX2, ECT2, and PIK3CA. Furthermore, novel targetable oncogenic kinases within this amplicon include PRKCI, PAK2, MAP3K13, and TNIK. TCGA analysis of these genes identified amplification in more than 20% of clinical squamous cell carcinoma samples, correlating with a significant decrease in overall patient survival. Alteration of these genes frequently co-occurs and is dependent on 3q-chromosome amplification. The dependency of cancer cells on these amplified kinases provides a route toward personalized medicine in squamous cell carcinoma patients through development of small-molecules targeting these kinases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hongshuai Li ◽  
Jie Yang ◽  
Guohui Yang ◽  
Jia Ren ◽  
Yu Meng ◽  
...  

AbstractSarcoma is a rare malignancy with unfavorable prognoses. Accumulating evidence indicates that aberrant alternative splicing (AS) events are generally involved in cancer pathogenesis. The aim of this study was to identify the prognostic value of AS-related survival genes as potential biomarkers, and highlight the functional roles of AS events in sarcoma. RNA-sequencing and AS-event datasets were downloaded from The Cancer Genome Atlas (TCGA) sarcoma cohort and TCGA SpliceSeq, respectively. Survival-related AS events were further assessed using a univariate analysis. A multivariate Cox regression analysis was also performed to establish a survival-gene signature to predict patient survival, and the area-under-the-curve method was used to evaluate prognostic reliability. KOBAS 3.0 and Cytoscape were used to functionally annotate AS-related genes and to assess their network interactions. We detected 9674 AS events in 40,184 genes from 236 sarcoma samples, and the 15 most significant genes were then used to construct a survival regression model. We further validated the involvement of ten potential survival-related genes (TUBB3, TRIM69, ZNFX1, VAV1, KCNN2, VGLL3, AK7, ARMC4, LRRC1, and CRIP1) in the occurrence and development of sarcoma. Multivariate survival model analyses were also performed, and validated that a model using these ten genes provided good classifications for predicting patient outcomes. The present study has increased our understanding of AS events in sarcoma, and the gene-based model using AS-related events may serve as a potential predictor to determine the survival of sarcoma patients.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Zicheng Zhang ◽  
Congcong Yan ◽  
Ke Li ◽  
Siqi Bao ◽  
Lei Li ◽  
...  

AbstractThe emerging field of long noncoding RNA (lncRNA)-immunity has provided a new perspective on cancer immunity and immunotherapies. The lncRNA modifiers of infiltrating immune cells in the tumor immune microenvironment (TIME) and their impact on tumor behavior and disease prognosis remain largely uncharacterized. In the present study, a systems immunology framework integrating the noncoding transcriptome and immunogenomics profiles of 9549 tumor samples across 30 solid cancer types was used, and 36 lncRNAs were identified as modifier candidates underlying immune cell infiltration in the TIME at the pan-cancer level. These TIME lncRNA modifiers (TIL-lncRNAs) were able to subclassify various tumors into three de novo pan-cancer subtypes characterized by distinct immunological features, biological behaviors, and disease prognoses. Finally, a TIL-lncRNA-derived immune state index (TISI) that was reflective of immunological and oncogenic states but also predictive of patients’ prognosis was proposed. Furthermore, the TISI provided additional prognostic value for existing tumor immunological and molecular subtypes. By applying the TISI to tumors from different clinical immunotherapy cohorts, the TISI was found to be significantly negatively correlated with immune-checkpoint genes and to have the ability to predict the effectiveness of immunotherapy. In conclusion, the present study provided comprehensive resources and insights for future functional and mechanistic studies on lncRNA-mediated cancer immunity and highlighted the potential of the clinical application of lncRNA-based immunotherapeutic strategies in precision immunotherapy.


1996 ◽  
Vol 313 (3) ◽  
pp. 745-752 ◽  
Author(s):  
Françoise LEVAVASSEUR ◽  
Jocelyne LIÉTARD ◽  
Kohei OGAWA ◽  
Nathalie THÉRET ◽  
Peter D. BURBELO ◽  
...  

Laminin γ1 chain is present in all basement membranes and is expressed at high levels in various diseases, such as hepatic fibrosis. We have identified cis- and trans-acting elements involved in the regulation of this gene in normal rat liver, as well as in hepatocyte primary cultures and hepatoma cell lines. Northern-blot analyses showed that laminin γ1 mRNA was barely detectable in freshly isolated hepatocytes and expressed at high levels in hepatocyte primary cultures, as early as 4 h after liver dissociation. Actinomycin D and cycloheximide treatment in vivo and in vitro indicated that laminin γ1 overexpression in cultured hepatocytes was under the control of transcriptional mechanisms. Transfection of deletion mutants of the 5´ flanking region of murine LAMC1 gene in hepatoma cells that constitutively express laminin γ1 indicated that regulatory elements were located between -594 bp and -94 bp. This segment included GC- and CTC-containing motifs. Gel-shift analyses showed that two complexes were resolved with different affinity for the CTC sequence depending on the location of the GC box. The pattern of complex formation with nuclear factors from freshly isolated and cultured hepatocytes was different from that obtained with total liver and similar to that with hepatoma cells. Southwestern analysis indicated that several polypeptides bound the CTC-rich sequence. Affinity chromatography demonstrated that a Mr 60000 polypeptide was a major protein binding to the CTC motif. This polypeptide is probably involved in the transcriptional activation of various proto-oncogenes and extracellular matrix genes that are expressed at high levels in both hepatoma cells and early hepatocyte cultures.


Sign in / Sign up

Export Citation Format

Share Document