scholarly journals The molecular framework of heterophylly in Callitriche palustris L. differs from that in other amphibious plants

2020 ◽  
Author(s):  
Hiroyuki Koga ◽  
Mikiko Kojima ◽  
Yumiko Takebayashi ◽  
Hitoshi Sakakibara ◽  
Hirokazu Tsukaya

AbstractHeterophylly refers to the development of different leaf forms in a single plant depending on the environmental conditions. It is often observed in amphibious aquatic plants that can grow under aerial and submerged conditions. Although heterophylly is well recognized in aquatic plants, the associated developmental mechanisms and the molecular basis remain unclear. In this study, we analyzed heterophyllous leaf formation in an aquatic plant, Callitriche palustris, to clarify the underlying developmental and molecular mechanisms. Morphological analyses revealed extensive cell elongation and the rearrangement of cortical microtubules in the elongated submerged leaves of C. palustris. Our observations also suggested that gibberellin, ethylene, and abscisic acid regulate the formation of submerged leaves. However, the perturbation of one or more of the hormones was insufficient to induce the formation of submerged leaves under aerial conditions. Finally, we analyzed gene expression changes during aerial and submerged leaf development and narrowed down the candidate genes controlling heterophylly via transcriptomic comparisons, including a comparison with a closely related terrestrial species. We revealed that the molecular mechanism regulating heterophylly in C. palustris is associated with complex hormonal changes and diverse transcription factor gene expression profiles, which differs from the corresponding mechanisms in previously investigated amphibious plants.

2021 ◽  
Vol 14 (1) ◽  
pp. 41
Author(s):  
Hana Votavova ◽  
Zuzana Urbanova ◽  
David Kundrat ◽  
Michaela Dostalova Merkerova ◽  
Martin Vostry ◽  
...  

Deferasirox (DFX) is an oral iron chelator used to reduce iron overload (IO) caused by frequent blood cell transfusions in anemic myelodysplastic syndrome (MDS) patients. To study the molecular mechanisms by which DFX improves outcome in MDS, we analyzed the global gene expression in untreated MDS patients and those who were given DFX treatment. The gene expression profiles of bone marrow CD34+ cells were assessed by whole-genome microarrays. Initially, differentially expressed genes (DEGs) were determined between patients with normal ferritin levels and those with IO to address the effect of excessive iron on cellular pathways. These DEGs were annotated to Gene Ontology terms associated with cell cycle, apoptosis, adaptive immune response and protein folding and were enriched in cancer-related pathways. The deregulation of multiple cancer pathways in iron-overloaded patients suggests that IO is a cofactor favoring the progression of MDS. The DEGs between patients with IO and those treated with DFX were involved predominantly in biological processes related to the immune response and inflammation. These data indicate DFX modulates the immune response mainly via neutrophil-related genes. Suppression of negative regulators of blood cell differentiation essential for cell maturation and upregulation of heme metabolism observed in DFX-treated patients may contribute to the hematopoietic improvement.


Author(s):  
Zhenhua Dang ◽  
Yuanyuan Jia ◽  
Yunyun Tian ◽  
Jiabin Li ◽  
Yanan Zhang ◽  
...  

Organisms have evolved effective and distinct adaptive strategies to survive. Stipa grandis is one of the widespread dominant species on the typical steppe of the Inner Mongolian Plateau, and is regarded as a suitable species for studying the effects of grazing in this region. Although phenotypic (morphological and physiological) variations in S. grandis in response to long-term grazing have been identified, the molecular mechanisms underlying adaptations and plastic responses remain largely unknown. Accordingly, we performed a transcriptomic analysis to investigate changes in gene expression of S. grandis under four different grazing intensities. A total of 2,357 differentially expressed genes (DEGs) were identified among the tested grazing intensities, suggesting long-term grazing resulted in gene expression plasticity that affected diverse biological processes and metabolic pathways in S. grandis. DEGs were identified that indicated modulation of Calvin–Benson cycle and photorespiration metabolic pathways. The key gene´expression profiles encoding various proteins (e.g., Ribulose-1,5-bisphosphate carboxylase/oxygenase, fructose-1,6-bisphosphate aldolase, glycolate oxidase etc.) involved in these pathways suggest that they may synergistically respond to grazing to increase the resilience and stress tolerance of S. grandis. Our findings provide scientific clues for improving grassland use and protection, and identify important questions to address in future transcriptome studies.


2021 ◽  
Author(s):  
Hongpeng Fang ◽  
Zhansen Huang ◽  
Xianzi Zeng ◽  
Jiaming Wan ◽  
Jieying Wu ◽  
...  

Abstract Background As a common malignant cancer of the urinary system, the precise molecular mechanisms of bladder cancer remain to be illuminated. The purpose of this study was to identify core genes with prognostic value as potential oncogenes for the diagnosis, prognosis or novel therapeutic targets of bladder cancer. Methods The gene expression profiles GSE3167 and GSE7476 were available from the Gene Expression Omnibus (GEO) database. Next, PPI network was built to filter the hub gene through the STRING database and Cytoscape software and GEPIA and Kaplan-Meier plotter were implemented. Frequency and type of hub genes and sub groups analysis were performed in cBioportal and ULCAN database. Finally,We used RT-qPCR to confirm our results. Results Totally, 251 DEGs were excavated from two datasets in our study. We only founded high expression of SMC4, TYMS, CCNB1, CKS1B, NUSAP1 and KPNA2 was associated with worse outcomes in bladder cancer patients and no matter from the type of mutation or at the transcriptional level of hub genes, the tumor showed a high form of expression. However, only the expression of SMC4,CCNB1and CKS1B remained changed between the cancer and the normal samples in our results of RT-qPCR. Conclusion In conclusion,These findings indicate that the SMC4,CCNB1 and CKS1B may serve as critical biomarkers in the development and poor prognosis.


2021 ◽  
Author(s):  
Giulia Zancolli ◽  
Maarten Reijnders ◽  
Robert Waterhouse ◽  
Marc Robinson-Rechavi

Animals have repeatedly evolved specialized organs and anatomical structures to produce and deliver a cocktail of potent bioactive molecules to subdue prey or predators: venom. This makes it one of the most widespread convergent functions in the animal kingdom. Whether animals have adopted the same genetic toolkit to evolved venom systems is a fascinating question that still eludes us. Here, we performed the first comparative analysis of venom gland transcriptomes from 20 venomous species spanning the main Metazoan lineages, to test whether different animals have independently adopted similar molecular mechanisms to perform the same function. We found a strong convergence in gene expression profiles, with venom glands being more similar to each other than to any other tissue from the same species, and their differences closely mirroring the species phylogeny. Although venom glands secrete some of the fastest evolving molecules (toxins), their gene expression does not evolve faster than evolutionarily older tissues. We found 15 venom gland specific gene modules enriched in endoplasmic reticulum stress and unfolded protein response pathways, indicating that animals have independently adopted stress response mechanisms to cope with mass production of toxins. This, in turns, activates regulatory networks for epithelial development, cell turnover and maintenance which seem composed of both convergent and lineage-specific factors, possibly reflecting the different developmental origins of venom glands. This study represents the first step towards an understanding of the molecular mechanisms underlying the repeated evolution of one of the most successful adaptive traits in the animal kingdom.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Ben Holmes ◽  
Seung Ho Jung ◽  
Jing Lu ◽  
Jessica A. Wagner ◽  
Liudmilla Rubbi ◽  
...  

Transcranial direct current stimulation (tDCS) has been shown to modulate neuroplasticity. Beneficial effects are observed in patients with psychiatric disorders and enhancement of brain performance in healthy individuals has been observed following tDCS. However, few studies have attempted to elucidate the underlying molecular mechanisms of tDCS in the brain. This study was conducted to assess the impact of tDCS on gene expression within the rat cerebral cortex. Anodal tDCS was applied at 3 different intensities followed by RNA-sequencing and analysis. In each current intensity, approximately 1,000 genes demonstrated statistically significant differences compared to the sham group. A variety of functional pathways, biological processes, and molecular categories were found to be modified by tDCS. The impact of tDCS on gene expression was dependent on current intensity. Results show that inflammatory pathways, antidepressant-related pathways (GTP signaling, calcium ion binding, and transmembrane/signal peptide pathways), and receptor signaling pathways (serotonergic, adrenergic, GABAergic, dopaminergic, and glutamate) were most affected. Of the gene expression profiles induced by tDCS, some changes were observed across multiple current intensities while other changes were unique to a single stimulation intensity. This study demonstrates that tDCS can modify the expression profile of various genes in the cerebral cortex and that these tDCS-induced alterations are dependent on the current intensity applied.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1247 ◽  
Author(s):  
David G.J. Cucchi ◽  
Costa Bachas ◽  
Marry M. van den Heuvel-Eibrink ◽  
Susan T.C.J.M. Arentsen-Peters ◽  
Zinia J. Kwidama ◽  
...  

Novel treatment strategies are of paramount importance to improve clinical outcomes in pediatric AML. Since chemotherapy is likely to remain the cornerstone of curative treatment of AML, insights in the molecular mechanisms that determine its cytotoxic effects could aid further treatment optimization. To assess which genes and pathways are implicated in tumor drug resistance, we correlated ex vivo drug response data to genome-wide gene expression profiles of 73 primary pediatric AML samples obtained at initial diagnosis. Ex vivo response of primary AML blasts towards cytarabine (Ara C), daunorubicin (DNR), etoposide (VP16), and cladribine (2-CdA) was associated with the expression of 101, 345, 206, and 599 genes, respectively (p < 0.001, FDR 0.004–0.416). Microarray based expression of multiple genes was technically validated using qRT-PCR for a selection of genes. Moreover, expression levels of BRE, HIF1A, and CLEC7A were confirmed to be significantly (p < 0.05) associated with ex vivo drug response in an independent set of 48 primary pediatric AML patients. We present unique data that addresses transcriptomic analyses of the mechanisms underlying ex vivo drug response of primary tumor samples. Our data suggest that distinct gene expression profiles are associated with ex vivo drug response, and may confer a priori drug resistance in leukemic cells. The described associations represent a fundament for the development of interventions to overcome drug resistance in AML, and maximize the benefits of current chemotherapy for sensitive patients.


2019 ◽  
Vol 12 (S7) ◽  
Author(s):  
Jia Wen ◽  
Benika Hall ◽  
Xinghua Shi

Abstract Background Colon cancer is one of the common cancers in human. Although the number of annual cases has decreased drastically, prognostic screening and translational methods can be improved. Hence, it is critical to understand the molecular mechanisms of disease progression and prognosis. Results In this study, we develop a new strategy for integrating microRNA and gene expression profiles together with clinical information toward understanding the regulation of colon cancer. Particularly, we use this approach to identify microRNA and gene expression networks that are specific to certain pathological stages. To demonstrate the application of our method, we apply this approach to identify microRNA and gene interactions that are specific to pathological stages of colon cancer in The Cancer Genome Atlas (TCGA) datasets. Conclusions Our results show that there are significant differences in network connections between miRNAs and genes in different pathological stages of colon cancer. These findings point to a hypothesis that these networks signify different roles of microRNA and gene regulation in the pathogenesis and tumorigenesis of colon cancer.


2020 ◽  
Vol 11 ◽  
Author(s):  
Long Li ◽  
Jing Ye ◽  
Houhua Li ◽  
Qianqian Shi

Primula vulgaris exhibits a wide range of flower colors and is a valuable ornamental plant. The combination of flavonols/anthocyanins and carotenoids provides various colorations ranging from yellow to violet-blue. However, the complex metabolic networks and molecular mechanisms underlying the different flower colors of P. vulgaris remain unclear. Based on comprehensive analysis of morphological anatomy, metabolites, and gene expression in different-colored flowers of P. vulgaris, the mechanisms relating color-determining compounds to gene expression profiles were revealed. In the case of P. vulgaris flower color, hirsutin, rosinin, petunidin-, and cyanidin-type anthocyanins and the copigment herbacetin contributed to the blue coloration, whereas peonidin-, cyandin-, and delphinidin-type anthocyanins showed high accumulation levels in pink flowers. The color formation of blue and pink were mainly via the regulation of F3′5′H (c53168), AOMT (c47583, c44905), and 3GT (c50034). Yellow coloration was mainly due to gossypetin and carotenoid, which were regulated by F3H (c43100), F3 1 (c53714), 3GT (c53907) as well as many carotenoid biosynthetic pathway-related genes. Co-expression network and transient expression analysis suggested a potential direct link between flavonoid and carotenoid biosynthetic pathways through MYB transcription factor regulation. This work reveals that transcription changes influence physiological characteristics, and biochemistry characteristics, and subsequently results in flower coloration in P. vulgaris.


2022 ◽  
Author(s):  
Lyubov N. Chuvakova ◽  
Sergey Yu. Funikov ◽  
Artem I. Davletshin ◽  
Irina B. Fedotova ◽  
Mikhail B. Evgen'ev ◽  
...  

Audiogenic epilepsy (AE), developing in rodent strains in response to sound, is widely used as the model of generalized convulsive epilepsy, while the molecular mechanisms determining AE are currently poorly understood. The brain region that is crucial for AE development isthe inferior and superior colliculi (IC, SC). We compared IC-SC gene expression profiles in rats with different AE susceptibility using transcriptome analysis.The transcriptomes were obtained from the IC-SC of Wistar rats (with no AE), Krushinsky-Molodkina (KM) strain rats (100% AE susceptible), and ”0” strain rats (with no AE) selected from F2 KM x Wistar hybrids for AE absence. KM gene expression displayed characteristic differences inboth of the strains that were not susceptible to AE. There was increased expression of a number of genes responsible for positive regulation of the MAPK signaling cascade, as well as of genes responsible for the production of interferon and several other cytokines. An increase in the expression levels of theTTR gene was found in KM rats, as well as significantly lower expression of the Msh3 gene (involved in post-replicative DNA repair systems). AE was also describedin the 101/HY mouse strain with a mutation in the locus controlling DNA repair. The DNA repair system defects could be the primary factor leading to the accumulation of mutations, which, in turn, promote AE. Keywords: udiogenic seizure, KM strain, transcriptome, TTR gene, Msh3 gene, DNA repair


2022 ◽  
Vol 2022 ◽  
pp. 1-17
Author(s):  
Md. Rakibul Islam ◽  
Lway Faisal Abdulrazak ◽  
Mohammad Khursheed Alam ◽  
Bikash Kumar Paul ◽  
Kawsar Ahmed ◽  
...  

Background. Medulloblastoma (MB) is the most occurring brain cancer that mostly happens in childhood age. This cancer starts in the cerebellum part of the brain. This study is designed to screen novel and significant biomarkers, which may perform as potential prognostic biomarkers and therapeutic targets in MB. Methods. A total of 103 MB-related samples from three gene expression profiles of GSE22139, GSE37418, and GSE86574 were downloaded from the Gene Expression Omnibus (GEO). Applying the limma package, all three datasets were analyzed, and 1065 mutual DEGs were identified including 408 overexpressed and 657 underexpressed with the minimum cut-off criteria of ∣ log   fold   change ∣ > 1 and P < 0.05 . The Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and WikiPathways enrichment analyses were executed to discover the internal functions of the mutual DEGs. The outcomes of enrichment analysis showed that the common DEGs were significantly connected with MB progression and development. The Search Tool for Retrieval of Interacting Genes (STRING) database was used to construct the interaction network, and the network was displayed using the Cytoscape tool and applying connectivity and stress value methods of cytoHubba plugin 35 hub genes were identified from the whole network. Results. Four key clusters were identified using the PEWCC 1.0 method. Additionally, the survival analysis of hub genes was brought out based on clinical information of 612 MB patients. This bioinformatics analysis may help to define the pathogenesis and originate new treatments for MB.


Sign in / Sign up

Export Citation Format

Share Document