scholarly journals Transforming representations of movement from body- to world-centric space

Author(s):  
Jenny Lu ◽  
Elena A. Westeinde ◽  
Lydia Hamburg ◽  
Paul M. Dawson ◽  
Cheng Lyu ◽  
...  

When an animal moves through the world, its brain receives a stream of information about the body's translational movement. These incoming movement signals, relayed from sensory organs or as copies of motor commands, are referenced relative to the body. Ultimately, such body-centric movement signals must be transformed into world-centric coordinates for navigation [1]. Here we show that this computation occurs in the fan-shaped body in the Drosophila brain. We identify two cell types in the fan-shaped body, PFNd and PFNv [2,3], that conjunctively encode translational velocity signals and heading signals in walking flies. Specifically, PFNd and PFNv neurons form a Cartesian representation of body-centric translational velocity — acquired from premotor brain regions [4,5] — that is layered onto a world-centric heading representation inherited from upstream compass neurons [6-8]. Then, we demonstrate that the next network layer, comprising hΔB neurons, is wired so as to transform the representation of translational velocity from body-centric to world-centric coordinates. We show that this transformation is predicted by a computational model derived directly from electron microscopy connectomic data [9]. The model illustrates the key role of a specific network motif, whereby the PFN neurons that synapse onto the same hΔB neuron have heading-tuning differences that offset the differences in their preferred body-centric directions of movement. By integrating a world-centric representation of travel velocity over time, it should be possible for the brain to form a working memory of the path traveled through the environment [10-12].

Author(s):  
Oļesja Minejeva ◽  
Zigurds Markovics ◽  
Nauris Zdanovskis

Brain is a part of the organism’s complex structure that performs many functions, which are responsible for the main human abilities: to talk, to hear, to move, to see, etc. The brain consists of several areas that are not only directly connected with the different body systems, but also depend and may affect each other. Researchers and doctors are trying to summarize and visualize these relationships for an important purpose – to get the information about possible reactions of the body in case of various diseases, possibilities of recovery, risks, etc. important issues. Neurologists are looking for ways to "move" through the brain in virtual space for viewing the synapses between different areas. It might be useful to get a general idea of how brain regions are interrelated. The term "connectome", which is the complete structural description of the brain connections, or the map of connections, is used for the common perception of brain relationships. Connectome is a network of thousands of nerve fibres that transmits signals between the special regions responsible for functions such as vision, hearing, movement and memory, and combines these functions in a system that perceives, decides and acts as a whole. So, the relationships of brain neural regions can be represented as a graph with vertices corresponding to specific areas, but edges are links between these areas. This graph can be analysed using quantitative measures, like node degree, centrality, modularity etc. This article discusses the different network measures for the connections between brain's regions. The purpose is to determine the most important areas and the role of individual connections in the general functional brain model.


2021 ◽  
Vol 10 (11) ◽  
pp. 2358
Author(s):  
Maria Grazia Giovannini ◽  
Daniele Lana ◽  
Chiara Traini ◽  
Maria Giuliana Vannucchi

The microbiota–gut system can be thought of as a single unit that interacts with the brain via the “two-way” microbiota–gut–brain axis. Through this axis, a constant interplay mediated by the several products originating from the microbiota guarantees the physiological development and shaping of the gut and the brain. In the present review will be described the modalities through which the microbiota and gut control each other, and the main microbiota products conditioning both local and brain homeostasis. Much evidence has accumulated over the past decade in favor of a significant association between dysbiosis, neuroinflammation and neurodegeneration. Presently, the pathogenetic mechanisms triggered by molecules produced by the altered microbiota, also responsible for the onset and evolution of Alzheimer disease, will be described. Our attention will be focused on the role of astrocytes and microglia. Numerous studies have progressively demonstrated how these glial cells are important to ensure an adequate environment for neuronal activity in healthy conditions. Furthermore, it is becoming evident how both cell types can mediate the onset of neuroinflammation and lead to neurodegeneration when subjected to pathological stimuli. Based on this information, the role of the major microbiota products in shifting the activation profiles of astrocytes and microglia from a healthy to a diseased state will be discussed, focusing on Alzheimer disease pathogenesis.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Martin L. Pall

Abstract Millimeter wave (MM-wave) electromagnetic fields (EMFs) are predicted to not produce penetrating effects in the body. The electric but not magnetic part of MM-EMFs are almost completely absorbed within the outer 1 mm of the body. Rodents are reported to have penetrating MM-wave impacts on the brain, the myocardium, liver, kidney and bone marrow. MM-waves produce electromagnetic sensitivity-like changes in rodent, frog and skate tissues. In humans, MM-waves have penetrating effects including impacts on the brain, producing EEG changes and other neurological/neuropsychiatric changes, increases in apparent electromagnetic hypersensitivity and produce changes on ulcers and cardiac activity. This review focuses on several issues required to understand penetrating effects of MM-waves and microwaves: 1. Electronically generated EMFs are coherent, producing much higher electrical and magnetic forces then do natural incoherent EMFs. 2. The fixed relationship between electrical and magnetic fields found in EMFs in a vacuum or highly permeable medium such as air, predicted by Maxwell’s equations, breaks down in other materials. Specifically, MM-wave electrical fields are almost completely absorbed in the outer 1 mm of the body due to the high dielectric constant of biological aqueous phases. However, the magnetic fields are very highly penetrating. 3. Time-varying magnetic fields have central roles in producing highly penetrating effects. The primary mechanism of EMF action is voltage-gated calcium channel (VGCC) activation with the EMFs acting via their forces on the voltage sensor, rather than by depolarization of the plasma membrane. Two distinct mechanisms, an indirect and a direct mechanism, are consistent with and predicted by the physics, to explain penetrating MM-wave VGCC activation via the voltage sensor. Time-varying coherent magnetic fields, as predicted by the Maxwell–Faraday version of Faraday’s law of induction, can put forces on ions dissolved in aqueous phases deep within the body, regenerating coherent electric fields which activate the VGCC voltage sensor. In addition, time-varying magnetic fields can directly put forces on the 20 charges in the VGCC voltage sensor. There are three very important findings here which are rarely recognized in the EMF scientific literature: coherence of electronically generated EMFs; the key role of time-varying magnetic fields in generating highly penetrating effects; the key role of both modulating and pure EMF pulses in greatly increasing very short term high level time-variation of magnetic and electric fields. It is probable that genuine safety guidelines must keep nanosecond timescale-variation of coherent electric and magnetic fields below some maximum level in order to produce genuine safety. These findings have important implications with regard to 5G radiation.


Author(s):  
Lingfeng Qin ◽  
Haifeng Zhang ◽  
Busu Li ◽  
Quan Jiang ◽  
Francesc Lopez ◽  
...  

Objective: Cerebral cavernous malformations (CCMs) can happen anywhere in the body, although they most commonly produce symptoms in the brain. The role of CCM genes in other vascular beds outside the brain and retina is not well-examined, although the 3 CCM-associated genes ( CCM1 , CCM2 , and CCM3 ) are ubiquitously expressed in all tissues. We aimed to determine the role of CCM gene in lymphatics. Approach and Results: Mice with an inducible pan–endothelial cell (EC) or lymphatic EC deletion of Ccm3 ( Pdcd10 ECKO or Pdcd10 LECKO ) exhibit dilated lymphatic capillaries and collecting vessels with abnormal valve structure. Morphological alterations were correlated with lymphatic dysfunction in Pdcd10 LECKO mice as determined by Evans blue dye and fluorescein isothiocyanate(FITC)-dextran transport assays. Pdcd10 LECKO lymphatics had increased VEGFR3 (vascular endothelial growth factor receptor-3)-ERK1/2 signaling with lymphatic hyperplasia. Mechanistic studies suggested that VEGFR3 is primarily regulated at a transcriptional level in Ccm3-deficient lymphatic ECs, in an NF-κB (nuclear factor κB)–dependent manner. CCM3 binds to importin alpha 2/KPNA2 (karyopherin subunit alpha 2), and a CCM3 deletion releases KPNA2 to activate NF-κB P65 by facilitating its nuclear translocation and P65-dependent VEGFR3 transcription. Moreover, increased VEGFR3 in lymphatic EC preferentially activates ERK1/2 signaling, which is critical for lymphatic EC proliferation. Importantly, inhibition of VEGFR3 or ERK1/2 rescued the lymphatic defects in structure and function. Conclusions: Our data demonstrate that CCM3 deletion augments the VEGFR3-ERK1/2 signaling in lymphatic EC that drives lymphatic hyperplasia and malformation and warrant further investigation on the potential clinical relevance of lymphatic dysfunction in patients with CCM.


2021 ◽  
Vol 15 ◽  
Author(s):  
Louis-Philippe Bernier ◽  
Clément Brunner ◽  
Azzurra Cottarelli ◽  
Matilde Balbi

The neurovascular unit (NVU) of the brain is composed of multiple cell types that act synergistically to modify blood flow to locally match the energy demand of neural activity, as well as to maintain the integrity of the blood-brain barrier (BBB). It is becoming increasingly recognized that the functional specialization, as well as the cellular composition of the NVU varies spatially. This heterogeneity is encountered as variations in vascular and perivascular cells along the arteriole-capillary-venule axis, as well as through differences in NVU composition throughout anatomical regions of the brain. Given the wide variations in metabolic demands between brain regions, especially those of gray vs. white matter, the spatial heterogeneity of the NVU is critical to brain function. Here we review recent evidence demonstrating regional specialization of the NVU between brain regions, by focusing on the heterogeneity of its individual cellular components and briefly discussing novel approaches to investigate NVU diversity.


‘Infection and immunity’ considers the response of the body to pathogens, such as bacteria, viruses, prions, fungi, and parasites, which are discussed in terms of their nature, life cycle, and modes of infection. The role of the immune system in defence against infection is discussed, including innate and adaptive (acquired) immunity, antigens, the major histocompatibility complex, and the different cell types involved (antigen-presenting cells, T-cells, and B-cells). The mechanisms and cellular basis of inflammation are considered, as are post-infection repair mechanisms, and pathologies of the immune system such as hypersensitivity, autoimmunity and transplantations, and immunodeficiency (both primary and secondary to other diseases).


1987 ◽  
Vol 252 (6) ◽  
pp. H1183-H1191
Author(s):  
C. Iadecola ◽  
P. M. Lacombe ◽  
M. D. Underwood ◽  
T. Ishitsuka ◽  
D. J. Reis

We studied whether adrenal medullary catecholamines (CAs) contribute to the metabolically linked increase in regional cerebral blood flow (rCBF) elicited by electrical stimulation of the dorsal medullary reticular formation (DMRF). Rats were anesthetized (alpha-chloralose, 30 mg/kg), paralyzed, and artificially ventilated. The DMRF was electrically stimulated with intermittent trains of pulses through microelectrodes stereotaxically implanted. Blood gases were controlled and, during stimulation, arterial pressure was maintained within the autoregulated range for rCBF. rCBF and blood-brain barrier (BBB) permeability were determined in homogenates of brain regions by using [14C]iodoantipyrine and alpha-aminoisobutyric acid (AIB), respectively, as tracers. Plasma CAs (epinephrine and norepinephrine) were measured radioenzymatically. DMRF stimulation increased rCBF throughout the brain (n = 5; P less than 0.01, analysis of variance) and elevated plasma CAs substantially (n = 4). Acute bilateral adrenalectomy abolished the increase in plasma epinephrine (n = 4), reduced the increases in flow (n = 6) in cerebral cortex (P less than 0.05), and abolished them elsewhere in brain (P greater than 0.05). Comparable effects on rCBF were obtained by selective adrenal demedullation (n = 7) or pretreatment with propranolol (1.5 mg/kg iv) (n = 5). DMRF stimulation did not increase the permeability of the BBB to AIB (n = 5). We conclude that the increases in rCBF elicited from the DMRF has two components, one dependent on, and the other independent of CAs. Since the BBB is impermeable to CAs and DMRF stimulation fails to open the BBB, the results suggest that DMRF stimulation allows, through a mechanism not yet determined, circulating CAs to act on brain and affect brain function.


2020 ◽  
Vol 49 (D1) ◽  
pp. D1029-D1037
Author(s):  
Liting Song ◽  
Shaojun Pan ◽  
Zichao Zhang ◽  
Longhao Jia ◽  
Wei-Hua Chen ◽  
...  

Abstract The human brain is the most complex organ consisting of billions of neuronal and non-neuronal cells that are organized into distinct anatomical and functional regions. Elucidating the cellular and transcriptome architecture underlying the brain is crucial for understanding brain functions and brain disorders. Thanks to the single-cell RNA sequencing technologies, it is becoming possible to dissect the cellular compositions of the brain. Although great effort has been made to explore the transcriptome architecture of the human brain, a comprehensive database with dynamic cellular compositions and molecular characteristics of the human brain during the lifespan is still not available. Here, we present STAB (a Spatio-Temporal cell Atlas of the human Brain), a database consists of single-cell transcriptomes across multiple brain regions and developmental periods. Right now, STAB contains single-cell gene expression profiling of 42 cell subtypes across 20 brain regions and 11 developmental periods. With STAB, the landscape of cell types and their regional heterogeneity and temporal dynamics across the human brain can be clearly seen, which can help to understand both the development of the normal human brain and the etiology of neuropsychiatric disorders. STAB is available at http://stab.comp-sysbio.org.


2014 ◽  
Vol 26 (5) ◽  
pp. 1131-1140 ◽  
Author(s):  
Malia Mason ◽  
Joe C. Magee ◽  
Susan T. Fiske

The negotiation of social order is intimately connected to the capacity to infer and track status relationships. Despite the foundational role of status in social cognition, we know little about how the brain constructs status from social interactions that display it. Although emerging cognitive neuroscience reveals that status judgments depend on the intraparietal sulcus, a brain region that supports the comparison of targets along a quantitative continuum, we present evidence that status judgments do not necessarily reduce to ranking targets along a quantitative continuum. The process of judging status also fits a social interdependence analysis. Consistent with third-party perceivers judging status by inferring whose goals are dictating the terms of the interaction and who is subordinating their desires to whom, status judgments were associated with increased recruitment of medial pFC and STS, brain regions implicated in mental state inference.


2010 ◽  
Vol 31 (1) ◽  
pp. 362-370 ◽  
Author(s):  
Giuseppe Pignataro ◽  
Elga Esposito ◽  
Ornella Cuomo ◽  
Rossana Sirabella ◽  
Francesca Boscia ◽  
...  

It has been recently shown that a short sublethal brain ischemia subsequent to a prolonged harmful ischemic episode may confer ischemic neuroprotection, a phenomenon termed ischemic postconditioning. Na+/Ca2+ exchanger (NCX) isoforms, NCX1, NCX2, and NCX3, are plasma membrane ionic transporters widely distributed in the brain and involved in the control of Na+ and Ca2+ homeostasis and in the progression of stroke damage. The objective of this study was to evaluate the role of these three proteins in the postconditioning-induced neuroprotection. The NCX protein and mRNA expression was evaluated at different time points in the ischemic temporoparietal cortex of rats subjected to tMCAO alone or to tMCAO plus ischemic postconditioning. The results of this study showed that NCX3 protein and ncx3 mRNA were upregulated in those brain regions protected by postconditioning treatment. These changes in NCX3 expression were mediated by the phosphorylated form of the ubiquitously expressed serine/threonine protein kinase p-AKT, as the p-AKT inhibition prevented NCX3 upregulation. The relevant role of NCX3 during postconditioning was further confirmed by results showing that NCX3 silencing, induced by intracerebroventricular infusion of small interfering RNA (siRNA), partially reverted the postconditioning-induced neuroprotection. The results of this study support the idea that the enhancement of NCX3 expression and activity might represent a reasonable strategy to reduce the infarct extension after stroke.


Sign in / Sign up

Export Citation Format

Share Document