scholarly journals Pan-cancer analysis of mRNA stability for decoding tumour post-transcriptional programs

2021 ◽  
Author(s):  
Gabrielle Perron ◽  
Pouria Jandaghi ◽  
Maryam Rajaee ◽  
Rached Alkallas ◽  
Yasser Riazalhosseini ◽  
...  

AbstractRNA stability is a crucial and often overlooked determinant of gene expression. Some of the regulators of mRNA stability are long known as key oncogenic or tumour suppressor factors. Nonetheless, the extent to which mRNA stability contributes to transcriptome remodeling in cancer is unknown, and the factors that modulate mRNA stability during cancer development and progression are largely uncharacterized. Here, by decoupling transcriptional and post-transcriptional effects in RNA-seq data of 7760 samples from 18 cancer types, we present a pan-cancer view of the mRNA stability changes that accompany tumour development and progression. We show that thousands of genes are dysregulated at the mRNA stability level, and identify the potential factors that drive these changes, including >80 RNA-binding proteins (RBPs) and microRNAs (miRNAs). Most RBPs and miRNAs have cancer type-specific activities, but a few show recurrent inactivation across multiple cancers, including the RBFOX family of RBPs and miR-29. Analysis of cell lines with phenotypic activation or inhibition of RBFOX1 and miR-29 confirms their role in modulation of genes that are dysregulated across multiple cancers, with functions in calcium signaling, extracellular matrix organization, and stemness. Overall, our study highlights the critical role of mRNA stability in shaping the tumour transcriptome, with recurrent post-transcriptional changes that are ~30% as frequent as transcriptional events. These results provide a resource for systematic interrogation of cancer-associated stability drivers and pathways.

2019 ◽  
Vol 127 (2) ◽  
pp. 654-660 ◽  
Author(s):  
Douglas W. Van Pelt ◽  
Zachary R. Hettinger ◽  
Peter W. Vanderklish

The decline of skeletal muscle mass during illness, injury, disuse, and aging is associated with poor health outcomes. Therefore, it is important to pursue a greater understanding of the mechanisms that dictate skeletal muscle adaptation. In this review, we propose that RNA-binding proteins (RBPs) comprise a critical regulatory node in the orchestration of adaptive responses in skeletal muscle. While RBPs have broadly pleiotropic molecular functions, our discussion is constrained at the outset by observations from hibernating animals, which suggest that RBP regulation of RNA stability and its impact on translational reprogramming is a key component of skeletal muscle response to anabolic and catabolic stimuli. We discuss the limited data available on the expression and functions of RBPs in adult skeletal muscle in response to disuse, aging, and exercise. A model is proposed in which dynamic changes in RBPs play a central role in muscle adaptive processes through their differential effects on mRNA stability. While limited, the currently available data suggest that understanding how adaptive (and maladaptive) changes in the expression of RBPs regulate mRNA stability in skeletal muscle could be an informative and productive research area for finding new strategies to limit atrophy and promote hypertrophy.


2020 ◽  
pp. jbc.RA120.014894
Author(s):  
Ravi Kumar ◽  
Dipak Kumar Poria ◽  
Partho Sarothi Ray

Post-transcriptional regulation of gene expression plays a critical role in controlling the inflammatory response. An uncontrolled inflammatory response results in chronic inflammation, often leading to tumorigenesis. Programmed cell death 4 (PDCD4) is a pro-inflammatory tumor-suppressor gene which helps to prevent the transition from chronic inflammation to cancer. PDCD4 mRNA translation is regulated by an interplay between the oncogenic microRNA miR-21 and the RNA-binding protein (RBP) HuR in response to LPS stimulation, but the role of other regulatory factors remain unknown. Here we report that the RBP Lupus antigen (La) interacts with the 3’UTR of PDCD4 mRNA and prevents miR-21-mediated translation repression. While LPS causes nuclear-cytoplasmic translocation of HuR, it enhances cellular La expression. Remarkably, La and HuR were found to bind cooperatively to the PDCD4 mRNA and mitigate miR-21-mediated translation repression. The cooperative action of La and HuR reduced cell proliferation and enhanced apoptosis, reversing the pro-oncogenic function of miR-21. Together, these observations demonstrate a cooperative interplay between two RBPs, triggered differentially by the same stimulus, which exerts a synergistic effect on PDCD4 expression and thereby helps maintain a balance between inflammation and tumorigenesis.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Sahana Suresh Babu ◽  
Johnson Rajasingh ◽  
Wing Tak Wong ◽  
Prasanna Krishnamurthy

Background: The Hu family of RNA-binding proteins, HuR (also known as ELAVL1 or human embryonic lethal abnormal vision-like protein), binds to the 3’-untranslated region of mRNAs and regulates transcript stability and translation. Global deletion of HuR is embryonically lethal in mice and plays a critical role in progenitor cell survival and biology. Induced-pluripotent stem cells (iPSC) have distinct transcriptional machinery for the maintenance of pluripotency and achievement of differentiation. However, the exact role of HuR in pluripotency or differentiation of iPSC to cardiomyocytes (iCM) remains unclear. Methods: HuR knockdown in human dermal fibroblast-derived iPSCs was achieved by CRISPR/Cas9 or lentiviral shRNA transduction and subsequently differentiated into cardiomyocytes (iCM). Then, the expression of HuR, pluripotency and cardiomyocyte markers were evaluated on days 0, 1, 3, 6, 8 and 17 following the initiation of differentiation. Results: At basal level, HuR expression was higher in the iPSCs compared to dermal fibroblasts. Upon differentiation of iPSCs into iCM, HuR mRNA expression gradually reduced with significantly lower levels on day 17. As expected, pluripotency markers gradually reduced upon differentiation with significantly lower levels from day 6 onwards. We observed a corresponding increase in ISL1, MESP1 (mesoderm/cardiac progenitor markers) from day 3 through day 8 with a steep fall from day 8 to day 17. This was associated with Myosin light chain-2V and GATA4 expression increases from day 8 through day 17. Interestingly, knockdown of HuR resulted in clumps of colonies with differentiated cells and a corresponding increase in cardiac-troponin positive cells. However, as a general observation, HuR knockdown reduced beating intensity compared to wild type cells. Conclusions: Based on these data, we could speculate that HuR might be necessary for maintenance of pluripotency and loss of which renders cells to differentiate in culture. HuR knockdown yields higher number of c-troponin positive cells but its effect on functional maturity of iCM needs to be further evaluated.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jeetayu Biswas ◽  
Vivek L. Patel ◽  
Varun Bhaskar ◽  
Jeffrey A. Chao ◽  
Robert H. Singer ◽  
...  

Abstract The IGF2 mRNA-binding proteins (ZBP1/IMP1, IMP2, IMP3) are highly conserved post-transcriptional regulators of RNA stability, localization and translation. They play important roles in cell migration, neural development, metabolism and cancer cell survival. The knockout phenotypes of individual IMP proteins suggest that each family member regulates a unique pool of RNAs, yet evidence and an underlying mechanism for this is lacking. Here, we combine systematic evolution of ligands by exponential enrichment (SELEX) and NMR spectroscopy to demonstrate that the major RNA-binding domains of the two most distantly related IMPs (ZBP1 and IMP2) bind to different consensus sequences and regulate targets consistent with their knockout phenotypes and roles in disease. We find that the targeting specificity of each IMP is determined by few amino acids in their variable loops. As variable loops often differ amongst KH domain paralogs, we hypothesize that this is a general mechanism for evolving specificity and regulation of the transcriptome.


2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Qi Lv ◽  
Fan Dong ◽  
Yong Zhou ◽  
Zhiping Cai ◽  
Gangmin Wang

AbstractRNA-binding proteins (RBPs) predominantly contribute to abnormal posttranscriptional gene modulation and disease progression in cancer. Sorbin and SH3 domain-containing 2 (SORBS2), an RBP, has been reported to be a potent tumor suppressor in several cancer types. Through integrative analysis of clinical specimens, we disclosed that the expression level of SORBS2 was saliently decreased in metastatic tissues and positively correlated with overall survival. We observed that overexpression of SORBS2 brought about decreased metastatic capacity in ccRCC cell lines. Transcriptome-wide analysis revealed that SORBS2 notably increased microtubule-associated tumor-suppressor 1 gene (MTUS1) expression. In-depth mechanistic exploring discovered that the Cys2-His2 zinc finger (C2H2-ZnF) domain of SORBS2 directly bound to the 3′ untranslated region (3′UTR) of MTUS1 mRNA, which increased MTUS1 mRNA stability. In addition, we identified that MTUS1 regulated microtubule dynamics via promoting KIF2CS192 phosphorylation by Aurora B. Together, our research identified SORBS2 as a suppressor of ccRCC metastasis by enhancing MTUS1 mRNA stability, providing a novel understanding of RBPs during ccRCC progression.


2018 ◽  
Vol 24 (16) ◽  
pp. 1766-1771 ◽  
Author(s):  
Kazuya Masuda ◽  
Tadamitsu Kishimoto

Background: Infection, tissue damage and aging can cause inflammation with high levels of inflammatory cytokines. Overproduction of inflammatory cytokines often leads to systemic inflammatory response syndrome (SIRS), severe sepsis, and septic shock. However, prominent therapeutic targets have not been found, although the incidence of sepsis is likely to increase annually. Our recent studies indicate that some RNA-binding proteins, which control gene expression of inflammatory cytokines at the post-transcriptional level, may play a critical role in inflammatory diseases such as sepsis. Results: 1) One of the RNA-binding proteins, AT-rich interactive domain-containing 5a (Arid5a) promotes cytokine production through control of mRNA half-lives of pro-inflammatory molecules such as IL-6, STAT3, T-bet, and OX40 in activated macrophages and T cells. Arid5a KO mice are refractory to endotoxin shock, bleomycininduced lung injury, and inflammatory autoimmune disease. 2) Chlorpromazine (CPZ), which is recognized as a psychotic drug, impairs post-transcriptional gene expression of Il6 in LPS-stimulated macrophages: CPZ inhibits the binding activity of Arid5a to the 3’UTR of Il6 mRNA, thereby destabilizing Il6 mRNA possibly through suppression of Arid5a expression. 3) CPZ has strong suppressive effects on cytokine production such as TNF-α in vivo. Mice with treatment of CPZ are resistant to lipopolysaccharide (LPS)-induced shock. Conclusion: Thus, Arid5a contributes to the activation of macrophages and T cells through positive control of mRNA half-lives of inflammatory cytokines and its related molecules, which might lead to cytokine storm. Interestingly, Arid5a was identified from an inhibitory effect of CPZ on IL-6 production in macrophages activated by LPS. Therefore, CPZ derivatives or Arid5a inhibitors may have a potential to suppress severe sepsis through control of post-transcriptional gene expression.


2020 ◽  
Vol 295 (42) ◽  
pp. 14291-14304
Author(s):  
Kathrin Bajak ◽  
Kevin Leiss ◽  
Christine Clayton ◽  
Esteban Erben

In Trypanosoma brucei and related kinetoplastids, gene expression regulation occurs mostly posttranscriptionally. Consequently, RNA-binding proteins play a critical role in the regulation of mRNA and protein abundance. Yet, the roles of many RNA-binding proteins are not understood. Our previous research identified the RNA-binding protein ZC3H5 as possibly involved in gene repression, but its role in controlling gene expression was unknown. We here show that ZC3H5 is an essential cytoplasmic RNA-binding protein. RNAi targeting ZC3H5 causes accumulation of precytokinetic cells followed by rapid cell death. Affinity purification and pairwise yeast two-hybrid analysis suggest that ZC3H5 forms a complex with three other proteins, encoded by genes Tb927.11.4900, Tb927.8.1500, and Tb927.7.3040. RNA immunoprecipitation revealed that ZC3H5 is preferentially associated with poorly translated, low-stability mRNAs, the 5′-untranslated regions and coding regions of which are enriched in the motif (U/A)UAG(U/A). As previously found in high-throughput analyses, artificial tethering of ZC3H5 to a reporter mRNA or other complex components repressed reporter expression. However, depletion of ZC3H5 in vivo caused only very minor decreases in a few targets, marked increases in the abundances of very stable mRNAs, an increase in monosomes at the expense of large polysomes, and appearance of “halfmer” disomes containing two 80S subunits and one 40S subunit. We speculate that the ZC3H5 complex might be implicated in quality control during the translation of suboptimal open reading frames.


2012 ◽  
Vol 91 (7) ◽  
pp. 651-658 ◽  
Author(s):  
V. Palanisamy ◽  
A. Jakymiw ◽  
E.A. Van Tubergen ◽  
N.J. D’Silva ◽  
K.L. Kirkwood

Cytokines are critical mediators of inflammation and host defenses. Regulation of cytokines can occur at various stages of gene expression, including transcription, mRNA export, and post- transcriptional and translational levels. Among these modes of regulation, post-transcriptional regulation has been shown to play a vital role in controlling the expression of cytokines by modulating mRNA stability. The stability of cytokine mRNAs, including TNFα, IL-6, and IL-8, has been reported to be altered by the presence of AU-rich elements (AREs) located in the 3′-untranslated regions (3′UTRs) of the mRNAs. Numerous RNA-binding proteins and microRNAs bind to these 3′UTRs to regulate the stability and/or translation of the mRNAs. Thus, this paper describes the cooperative function between RNA-binding proteins and miRNAs and how they regulate AU-rich elements containing cytokine mRNA stability/degradation and translation. These mRNA control mechanisms can potentially influence inflammation as it relates to oral biology, including periodontal diseases and oral pharyngeal cancer progression.


2020 ◽  
Vol 21 (12) ◽  
pp. 4302 ◽  
Author(s):  
Debojyoti Das ◽  
Aniruddha Das ◽  
Mousumi Sahu ◽  
Smruti Sambhav Mishra ◽  
Shaheerah Khan ◽  
...  

Circular RNAs (circRNAs) are a large family of noncoding RNAs that have emerged as novel regulators of gene expression. However, little is known about the function of circRNAs in pancreatic β-cells. Here, transcriptomic analysis of mice pancreatic islet RNA-sequencing data identified 77 differentially expressed circRNAs between mice fed with a normal diet and a high-fat diet. Surprisingly, multiple circRNAs were derived from the intron 2 of the preproinsulin 2 (Ins2) gene and are termed as circular intronic (ci)-Ins2. The expression of ci-Ins2 transcripts in mouse pancreatic islets, and βTC6 cells were confirmed by reverse transcription PCR, DNA sequencing, and RNase R treatment experiments. The level of ci-Ins2 was altered in βTC6 cells upon exposure to elevated levels of palmitate and glucose. Computational analysis predicted the interaction of several RNA-binding proteins with ci-Ins2 and their flanking region, suggesting their role in the ci-Ins2 function or biogenesis. Additionally, bioinformatics analysis predicted the association of several microRNAs with ci-Ins2. Gene ontology and pathway analysis of genes targeted by miRNAs associated with ci-Ins2 suggested the regulation of several key biological processes. Together, our findings indicate that differential expression of circRNAs, especially ci-Ins2 transcripts, may regulate β-cell function and may play a critical role in the development of diabetes.


2007 ◽  
Vol 27 (18) ◽  
pp. 6569-6579 ◽  
Author(s):  
Luciano H. Apponi ◽  
Seth M. Kelly ◽  
Michelle T. Harreman ◽  
Alexander N. Lehner ◽  
Anita H. Corbett ◽  
...  

ABSTRACT mRNA stability is modulated by elements in the mRNA transcript and their cognate RNA binding proteins. Poly(U) binding protein 1 (Pub1) is a cytoplasmic Saccharomyces cerevisiae mRNA binding protein that stabilizes transcripts containing AU-rich elements (AREs) or stabilizer elements (STEs). In a yeast two-hybrid screen, we identified nuclear poly(A) binding protein 2 (Nab2) as being a Pub1-interacting protein. Nab2 is an essential nucleocytoplasmic shuttling mRNA binding protein that regulates poly(A) tail length and mRNA export. The interaction between Pub1 and Nab2 was confirmed by copurification and in vitro binding assays. The interaction is mediated by the Nab2 zinc finger domain. Analysis of the functional link between these proteins reveals that Nab2, like Pub1, can modulate the stability of specific mRNA transcripts. The half-life of the RPS16B transcript, an ARE-like sequence-containing Pub1 target, is decreased in both nab2-1 and nab2-67 mutants. In contrast, GCN4, an STE-containing Pub1 target, is not affected. Similar results were obtained for other ARE- and STE-containing Pub1 target transcripts. Further analysis reveals that the ARE-like sequence is necessary for Nab2-mediated transcript stabilization. These results suggest that Nab2 functions together with Pub1 to modulate mRNA stability and strengthen a model where nuclear events are coupled to the control of mRNA turnover in the cytoplasm.


Sign in / Sign up

Export Citation Format

Share Document