scholarly journals Glial activation in prion diseases is strictly nonautonomous and requires neuronal PrPSc

2021 ◽  
Author(s):  
Asvin KK Lakkaraju ◽  
Silvia Sorce ◽  
Assunta Senatore ◽  
Mario Nuvolone ◽  
Jingjing Guo ◽  
...  

Although prion infections cause cognitive impairment and neuronal death, transcriptional and translational profiling shows progressive derangement within glia but surprisingly little changes within neurons. Here we expressed PrPC selectively in neurons, astrocytes or oligodendrocytes of mice. After prion infection, both astrocyte and neuron-restricted PrPC expression led to copious brain accumulation of PrPSc. As expected, neuron-restricted expression was associated with typical prion disease. However, mice with astrocyte-restricted PrPC expression experienced a normal life span, did not develop clinical disease, and did not show astro- or microgliosis. Besides confirming that PrPSc is innocuous to PrPC-deficient neurons, these results show that astrocyte-born PrPSc does not activate the extreme neuroinflammation that accompanies the onset of prion disease and precedes any molecular changes of neurons. This points to a nonautonomous mechanism by which prion-infected neurons instruct astrocytes and microglia to acquire a specific cellular state that, in turn, drives neural dysfunction.

2005 ◽  
Vol 79 (18) ◽  
pp. 11858-11863 ◽  
Author(s):  
Jason C. Bartz ◽  
Crista DeJoia ◽  
Tammy Tucker ◽  
Anthony E. Kincaid ◽  
Richard A. Bessen

ABSTRACT While prion infection of the lymphoreticular system (LRS) is necessary for neuroinvasion in many prion diseases, in bovine spongiform encephalopathy and atypical cases of sheep scrapie there is evidence to challenge that LRS infection is required for neuroinvasion. Here we investigated the role of prion infection of LRS tissues in neuroinvasion following extraneural inoculation with the HY and DY strains of the transmissible mink encephalopathy (TME) agent. DY TME agent infectivity was not detected in spleen or lymph nodes following intraperitoneal inoculation and clinical disease was not observed following inoculation into the peritoneum or lymph nodes, or after oral ingestion. In contrast, inoculation of the HY TME agent by each of these peripheral routes resulted in replication in the spleen and lymph nodes and induced clinical disease. To clarify the role of the LRS in neuroinvasion, the HY and DY TME agents were also inoculated into the tongue because it is densely innervated and lesions on the tongue, which are common in ruminants, increase the susceptibility of hamsters to experimental prion disease. Following intratongue inoculation, the DY TME agent caused prion disease and was detected in both the tongue and brainstem nuclei that innervate the tongue, but the prion protein PrPSc was not detected in the spleen or lymph nodes. These findings indicate that the DY TME agent can spread from the tongue to the brain along cranial nerves and neuroinvasion does not require agent replication in the LRS. These studies provide support for prion neuroinvasion from highly innervated peripheral tissues in the absence of LRS infection in natural prion diseases of livestock.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Lesley Cheng ◽  
Camelia Quek ◽  
Xia Li ◽  
Shayne A. Bellingham ◽  
Laura J. Ellett ◽  
...  

AbstractPrion diseases are distinguished by long pre-clinical incubation periods during which prions actively propagate in the brain and cause neurodegeneration. In the pre-clinical stage, we hypothesize that upon prion infection, transcriptional changes occur that can lead to early neurodegeneration. A longitudinal analysis of miRNAs in pre-clinical and clinical forms of murine prion disease demonstrated dynamic expression changes during disease progression in the affected thalamus region and serum. Serum samples at each timepoint were collected whereby extracellular vesicles (EVs) were isolated and used to identify blood-based biomarkers reflective of pathology in the brain. Differentially expressed EV miRNAs were validated in human clinical samples from patients with human sporadic Creutzfeldt-Jakob disease (sCJD), with the molecular subtype at codon 129 either methionine-methionine (MM, n = 14) or valine-valine (VV, n = 12) compared to controls (n = 20). EV miRNA biomarkers associated with prion infection predicted sCJD with an AUC of 0.800 (85% sensitivity and 66.7% specificity) in a second independent validation cohort (n = 26) of sCJD and control patients with MM or VV subtype. This study discovered clinically relevant miRNAs that benefit diagnostic development to detect prion-related diseases and therapeutic development to inhibit prion infectivity.


Pathogens ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 482
Author(s):  
Simote Foliaki ◽  
Bradley Groveman ◽  
Jue Yuan ◽  
Ryan Walters ◽  
Shulin Zhang ◽  
...  

Cerebral organoids (COs) are a self-organizing three-dimensional brain tissue mimicking the human cerebral cortex. COs are a promising new system for modelling pathological features of neurological disorders, including prion diseases. COs expressing normal prion protein (PrPC) are susceptible to prion infection when exposed to the disease isoforms of PrP (PrPD). This causes the COs to develop aspects of prion disease pathology considered hallmarks of disease, including the production of detergent-insoluble, protease-resistant misfolded PrPD species capable of seeding the production of more misfolded species. To determine whether COs can model aspects of familial prion diseases, we produced COs from donor fibroblasts carrying the E200K mutation, the most common cause of human familial prion disease. The mature E200K COs were assessed for the hallmarks of prion disease. We found that up to 12 months post-differentiation, E200K COs harbored no PrPD as confirmed by the absence of detergent-insoluble, protease-resistant, and seeding-active PrP species. Our results suggest that the presence of the E200K mutation within the prion gene is insufficient to cause disease in neuronal tissue. Therefore, other factors, such as further genetic modifiers or aging processes, may influence the onset of misfolding.


2018 ◽  
Vol 92 (15) ◽  
Author(s):  
James A. Carroll ◽  
Brent Race ◽  
Katie Williams ◽  
James Striebel ◽  
Bruce Chesebro

ABSTRACT Microglial cells in the central nervous system play important roles in neurodevelopment and resistance to infection, yet microglia can become neurotoxic under some conditions. An early event during prion infection is the activation of microglia and astrocytes in the brain prior to damage or death of neurons. Previous prion disease studies using two different strategies to manipulate signaling through the microglial receptor CSF-1R reported contrary effects on survival from prion disease. However, in these studies, reductions of microglial numbers and function were variable, thus confounding interpretation of the results. In the present work, we used oral treatment with a potent inhibitor of CSF-1R, PLX5622, to eliminate 78 to 90% of microglia from cortex early during the course of prion infection. Oral drug treatment early after infection with the RML scrapie strain significantly accelerated vacuolation, astrogliosis, and deposition of disease-associated prion protein. Furthermore, drug-treated mice had advanced clinical disease requiring euthanasia 31 days earlier than untreated control mice. Similarly, PLX5622 treatment during the preclinical phase at 80 days postinfection with RML scrapie also accelerated disease and resulted in euthanasia of mice 33 days earlier than infected controls. PLX5622 also accelerated clinical disease after infection with scrapie strains ME7 and 22L. Thus, microglia are critical in host defense during prion disease. The early accumulation of PrPSc in the absence of microglia suggested that microglia may function by clearing PrPSc, resulting in longer survival. IMPORTANCE Microglia contribute to many aspects of health and disease. When activated, microglia can be beneficial by repairing damage in the central nervous system (CNS) or they can turn harmful by becoming neurotoxic. In prion and prionlike diseases, the involvement of microglia in disease is unclear. Previous studies suggest that microglia can either speed up or slow down disease. In this study, we infected mice with prions and depleted microglia from the brains of mice using PLX5622, an effective CSF-1R tyrosine kinase inhibitor. Microglia were markedly reduced in brains, and prion disease was accelerated, so that mice needed to be euthanized 20 to 33 days earlier than infected control mice due to advanced clinical disease. Similar results occurred when mice were treated with PLX5622 at 80 days after infection, which was just prior to the start of clinical signs. Thus, microglia are important for removing prions, and the disease is faster when microglia are depleted.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Hermann C Altmeppen ◽  
Johannes Prox ◽  
Susanne Krasemann ◽  
Berta Puig ◽  
Katharina Kruszewski ◽  
...  

The prion protein (PrPC) is highly expressed in the nervous system and critically involved in prion diseases where it misfolds into pathogenic PrPSc. Moreover, it has been suggested as a receptor mediating neurotoxicity in common neurodegenerative proteinopathies such as Alzheimer's disease. PrPC is shed at the plasma membrane by the metalloprotease ADAM10, yet the impact of this on prion disease remains enigmatic. Employing conditional knockout mice, we show that depletion of ADAM10 in forebrain neurons leads to posttranslational increase of PrPC levels. Upon prion infection of these mice, clinical, biochemical, and morphological data reveal that lack of ADAM10 significantly reduces incubation times and increases PrPSc formation. In contrast, spatiotemporal analysis indicates that absence of shedding impairs spread of prion pathology. Our data support a dual role for ADAM10-mediated shedding and highlight the role of proteolytic processing in prion disease.


2017 ◽  
Vol 91 (6) ◽  
Author(s):  
Taichi Hamanaka ◽  
Keiko Nishizawa ◽  
Yuji Sakasegawa ◽  
Ayumi Oguma ◽  
Kenta Teruya ◽  
...  

ABSTRACT Prion diseases are progressive fatal neurodegenerative illnesses caused by the accumulation of transmissible abnormal prion protein (PrP). To find treatments for prion diseases, we searched for substances from natural resources that inhibit abnormal PrP formation in prion-infected cells. We found that high-molecular-weight components from insect cuticle extracts reduced abnormal PrP levels. The chemical nature of these components was consistent with that of melanin. In fact, synthetic melanin produced from tyrosine or 3-hydroxy-l-tyrosine inhibited abnormal PrP formation. Melanin did not modify cellular or cell surface PrP levels, nor did it modify lipid raft or cellular cholesterol levels. Neither did it enhance autophagy or lysosomal function. Melanin was capable of interacting with PrP at two N-terminal domains. Specifically, it strongly interacted with the PrP region of amino acids 23 to 50 including a positively charged amino acid cluster and weakly interacted with the PrP octarepeat peptide region of residues 51 to 90. However, the in vitro and in vivo data were inconsistent with those of prion-infected cells. Abnormal PrP formation in protein misfolding cyclic amplification was not inhibited by melanin. Survival after prion infection was not significantly altered in albino mice or exogenously melanin-injected mice compared with that of control mice. These data suggest that melanin, a main determinant of skin color, is not likely to modify prion disease pathogenesis, even though racial differences in the incidence of human prion diseases have been reported. Thus, the findings identify an interaction between melanin and the N terminus of PrP, but the pathophysiological roles of the PrP-melanin interaction remain unclear. IMPORTANCE The N-terminal region of PrP is reportedly important for neuroprotection, neurotoxicity, and abnormal PrP formation, as this region is bound by many factors, such as metal ions, lipids, nucleic acids, antiprion compounds, and several proteins, including abnormal PrP in prion disease and the Aβ oligomer in Alzheimer's disease. In the present study, melanin, a main determinant of skin color, was newly found to interact with this N-terminal region and inhibits abnormal PrP formation in prion-infected cells. However, the data for prion infection in mice lacking melanin production suggest that melanin is not associated with the prion disease mechanism, although the incidence of prion disease is reportedly much higher in white people than in black people. Thus, the roles of the PrP-melanin interaction remain to be further elucidated, but melanin might be a useful competitive tool for evaluating the functions of other ligands at the N-terminal region.


Viruses ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 65 ◽  
Author(s):  
James Carroll ◽  
Bruce Chesebro

Prion disorders are transmissible diseases caused by a proteinaceous infectious agent that can infect the lymphatic and nervous systems. The clinical features of prion diseases can vary, but common hallmarks in the central nervous system (CNS) are deposition of abnormally folded protease-resistant prion protein (PrPres or PrPSc), astrogliosis, microgliosis, and neurodegeneration. Numerous proinflammatory effectors expressed by astrocytes and microglia are increased in the brain during prion infection, with many of them potentially damaging to neurons when chronically upregulated. Microglia are important first responders to foreign agents and damaged cells in the CNS, but these immune-like cells also serve many essential functions in the healthy CNS. Our current understanding is that microglia are beneficial during prion infection and critical to host defense against prion disease. Studies indicate that reduction of the microglial population accelerates disease and increases PrPSc burden in the CNS. Thus, microglia are unlikely to be a foci of prion propagation in the brain. In contrast, neurons and astrocytes are known to be involved in prion replication and spread. Moreover, certain astrocytes, such as A1 reactive astrocytes, have proven neurotoxic in other neurodegenerative diseases, and thus might also influence the progression of prion-associated neurodegeneration.


2019 ◽  
Vol 31 (2) ◽  
pp. 200-209 ◽  
Author(s):  
S. Jo Moore ◽  
Jodi D. Smith ◽  
Jürgen A. Richt ◽  
Justin J. Greenlee

Prion diseases are neurodegenerative diseases characterized by the accumulation of misfolded prion protein (PrPSc) in the brain and other tissues. Animal prion diseases include scrapie in sheep, chronic wasting disease (CWD) in cervids, and transmissible mink encephalopathy (TME) in ranch-raised mink. We investigated the susceptibility of raccoons to various prion disease agents and compared the clinicopathologic features of the resulting disease. Raccoon kits were inoculated intracranially with the agents of raccoon-passaged TME (TMERac), bovine-passaged TME (TMEBov), hamster-adapted drowsy (TMEDY) or hyper TME (TMEHY), CWD from white-tailed deer (CWDWtd) or elk (CWDElk), or atypical (Nor98) scrapie. Raccoons were euthanized when they developed clinical signs of prion disease or at study endpoint (<82 mo post-inoculation). Brain was examined for the presence of spongiform change, and disease-associated PrPSc was detected using an enzyme immunoassay, western blot, and immunohistochemistry. All raccoons inoculated with the agents of TMERac and TMEBov developed clinical disease at ~6.6 mo post-inoculation, with widespread PrPSc accumulation in central nervous system tissues. PrPSc was detected in the brain of 1 of 4 raccoons in each of the CWDWtd-, CWDElk-, and TMEHY-inoculated groups. None of the raccoons inoculated with TMEDY or atypical scrapie agents developed clinical disease or detectable PrPSc accumulation. Our results indicate that raccoons are highly susceptible to infection with raccoon- and bovine-passaged TME agents, whereas CWD isolates from white-tailed deer or elk and hamster-adapted TMEHY transmit poorly. Raccoons appear to be resistant to infection with hamster-adapted TMEDY and atypical scrapie agents.


Author(s):  
Marina Betancor ◽  
Laura Moreno-Martínez ◽  
Óscar López-Pérez ◽  
Alicia Otero ◽  
Adelaida Hernaiz ◽  
...  

AbstractThe non-toxic C-terminal fragment of the tetanus toxin (TTC) has been described as a neuroprotective molecule since it binds to Trk receptors and activates Trk-dependent signaling, activating neuronal survival pathways and inhibiting apoptosis. Previous in vivo studies have demonstrated the ability of this molecule to increase mice survival, inhibit apoptosis and regulate autophagy in murine models of neurodegenerative diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. Prion diseases are fatal neurodegenerative disorders in which the main pathogenic event is the conversion of the cellular prion protein (PrPC) into an abnormal and misfolded isoform known as PrPSc. These diseases share different pathological features with other neurodegenerative diseases, such as amyotrophic lateral sclerosis, Parkinson’s disease or Alzheimer’s disease. Hitherto, there are no effective therapies to treat prion diseases. Here, we present a pilot study to test the therapeutic potential of TTC to treat prion diseases. C57BL6 wild-type mice and the transgenic mice Tg338, which overexpress PrPC, were intracerebrally inoculated with scrapie prions and then subjected to a treatment consisting of repeated intramuscular injections of TTC. Our results indicate that TTC displays neuroprotective effects in the murine models of prion disease reducing apoptosis, regulating autophagy and therefore increasing neuronal survival, although TTC did not increase survival time in these models.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 750
Author(s):  
Tibor Moško ◽  
Soňa Galušková ◽  
Radoslav Matěj ◽  
Magdalena Brůžová ◽  
Karel Holada

The possibilities for diagnosing prion diseases have shifted significantly over the last 10 years. The RT-QuIC assay option has been added for neuropsychiatric symptoms, supporting biomarkers and final post-mortem confirmation. Samples of brain homogenates used for final diagnosis, archived for many years, provide the possibility for retrospective studies. We used a second-generation RT-QuIC assay to detect seeding activity in different types of sporadic and genetic prion diseases in archival brain homogenates and post-mortem CSF samples that were 2 to 15 years old. Together, we tested 92 archival brain homogenates: 39 with definite prion disease, 28 with definite other neurological disease, and 25 with no signs of neurological disorders. The sensitivity and specificity of the assay were 97.4% and 100%, respectively. Differences were observed in gCJD E200K, compared to the sporadic CJD group. In 52 post-mortem CSF samples—24 with definite prion disease and 28 controls—we detected the inhibition of seeding reaction due to high protein content. Diluting the samples eliminated such inhibition and led to 95.8% sensitivity and 100% specificity of the assay. In conclusion, we proved the reliability of archived brain homogenates and post-mortem CSF samples for retrospective analysis by RT-QuIC after long-term storage, without changed reactivity.


Sign in / Sign up

Export Citation Format

Share Document