scholarly journals Structural Brain Correlates of Creative Personality

2021 ◽  
Author(s):  
Divya Sadana ◽  
Rajnish Kumar Gupta ◽  
S Senthil Kumaran ◽  
Sanjeev Jain ◽  
Jamuna Rajeswaran

Creative individuals and their enigmatic personalities have always been a subject of fascination. The current study explored the neuroanatomical basis of creative personality using voxel-based morphometry. The sample comprised of two groups - Creative (CR) group (professional creative artists) and matched controls with no demonstrated artistic creativity (NC) with 20 participants in each group, in the age range of 20-40 years, right-handed, and had minimum average intelligence (IQ > 90). Participants in CR were selected using the creativity achievement questionnaire, creativity was assessed using the Wallach & Kogan test of creativity, and personality was administered using NEO-FFI. Results indicated significantly higher openness to new experiences in CR which positively correlates with the right middle frontal gyrus. An increased grey matter volume in the inferior frontal gyrus, anterior cingulate gyrus in CR, pointing towards the integration of cognitive and imaginative processes that might be implicated in creative personality.

Author(s):  
Sevdalina Kandilarova ◽  
Drozdstoy Stoyanov ◽  
Nickolay Sirakov ◽  
Michael Maes ◽  
Karsten Specht

Objective: The aim of the current study was to examine whether and to what extent mood disorders, comprising major depression and bipolar disorder, are accompanied by structural changes in the brain as measured using voxel-based morphometry (VBM). Methods: We have performed a VBM study using a 3Т MRI system (GE Discovery 750w) in patients with mood disorders (n=50), namely 39 with major depression and 11 with bipolar disorder, compared to 42 age, sex and education matched healthy controls. Results: Our results show that depression was associated with significant decreases in grey matter (GM) volume restricted to regions located in medial frontal and anterior cingulate cortex on the left side and middle frontal gyrus, medial orbital gyrus, inferior frontal gyrus (triangular and orbital parts), and middle temporal gyrus (extending to the superior temporal gyrus) on the right side. When the patient group was separated into bipolar disorder and major depression the reductions remained significant only for the patients with major depressive disorder. Conclusions: Using VBM the present study was able to replicate decreases in GM volume restricted to frontal and temporal regions in patients with mood disorders mainly major depression, as compared with healthy controls. 


2019 ◽  
Vol 31 (05) ◽  
pp. 252-257 ◽  
Author(s):  
Sevdalina Kandilarova ◽  
Drozdstoy Stoyanov ◽  
Nickolay Sirakov ◽  
Michael Maes ◽  
Karsten Specht

AbstractObjective:The aim of the current study was to examine whether and to what extent mood disorders, comprising major depression and bipolar disorder, are accompanied by structural changes in the brain as measured using voxel-based morphometry (VBM).Methods:We performed a VBM study using a 3Т MRI system (GE Discovery 750w) in patients with mood disorders (n=50), namely, 39 with major depression and 11 with bipolar disorder compared to 42 age-, sex- and education-matched healthy controls.Results:Our results show that depression was associated with significant decreases in grey matter (GM) volume of the regions located within the medial frontal and anterior cingulate cortex on the left side and middle frontal gyrus, medial orbital gyrus, inferior frontal gyrus (triangular and orbital parts) and middle temporal gyrus (extending to the superior temporal gyrus) on the right side. When the patient group was separated into bipolar disorder and major depression, the reductions remained significant only for patients with major depressive disorder.Conclusions:Using VBM the present study was able to replicate decreases in GM volume restricted to frontal and temporal regions in patients with mood disorders, mainly major depression, compared with healthy controls.


Brain ◽  
2020 ◽  
Vol 143 (4) ◽  
pp. 1106-1113 ◽  
Author(s):  
Christoph J Schankin ◽  
Farooq H Maniyar ◽  
Denise E Chou ◽  
Michael Eller ◽  
Till Sprenger ◽  
...  

Abstract Patients with visual snow syndrome suffer from a continuous pan-field visual disturbance, additional visual symptoms, tinnitus, and non-perceptional symptoms. The pathophysiology of visual symptoms might involve dysfunctional visual cortex. So far, the extra-visual system has not been investigated. We aimed at identifying structural and functional correlates for visual and non-visual symptoms in visual snow syndrome. Patients were compared to age- and sex-matched controls using 18F-2-fluoro-2-deoxy-d-glucose PET (n = 20 per group) and voxel-based morphometry (n = 17 per group). Guided by the PET results, region of interest analysis was done in voxel-based morphometry to identify structural-functional correspondence. Grey matter volume was assessed globally. Patients had corresponding hypermetabolism and cortical volume increase in the extrastriate visual cortex at the junction of the right lingual and fusiform gyrus. There was hypometabolism in the right superior temporal gyrus and the left inferior parietal lobule. Patients had grey matter volume increases in the temporal and limbic lobes and decrease in the superior temporal gyrus. The corresponding structural and functional alterations emphasize the relevance of the visual association cortex for visual snow syndrome. The broad structural and functional footprint, however, confirms the clinical impression that the disorder extends beyond the visual system.


2008 ◽  
Vol 20 (2) ◽  
pp. 342-355 ◽  
Author(s):  
Tomoyo Morita ◽  
Shoji Itakura ◽  
Daisuke N. Saito ◽  
Satoshi Nakashita ◽  
Tokiko Harada ◽  
...  

Individuals can experience negative emotions (e.g., embarrassment) accompanying self-evaluation immediately after recognizing their own facial image, especially if it deviates strongly from their mental representation of ideals or standards. The aim of this study was to identify the cortical regions involved in self-recognition and self-evaluation along with self-conscious emotions. To increase the range of emotions accompanying self-evaluation, we used facial feedback images chosen from a video recording, some of which deviated significantly from normal images. In total, 19 participants were asked to rate images of their own face (SELF) and those of others (OTHERS) according to how photogenic they appeared to be. After scanning the images, the participants rated how embarrassed they felt upon viewing each face. As the photogenic scores decreased, the embarrassment ratings dramatically increased for the participant's own face compared with those of others. The SELF versus OTHERS contrast significantly increased the activation of the right prefrontal cortex, bilateral insular cortex, anterior cingulate cortex, and bilateral occipital cortex. Within the right prefrontal cortex, activity in the right precentral gyrus reflected the trait of awareness of observable aspects of the self; this provided strong evidence that the right precentral gyrus is specifically involved in self-face recognition. By contrast, activity in the anterior region, which is located in the right middle inferior frontal gyrus, was modulated by the extent of embarrassment. This finding suggests that the right middle inferior frontal gyrus is engaged in self-evaluation preceded by self-face recognition based on the relevance to a standard self.


2009 ◽  
Vol 195 (5) ◽  
pp. 393-402 ◽  
Author(s):  
Joaquim Radua ◽  
David Mataix-Cols

BackgroundSpecific cortico-striato-thalamic circuits are hypothesised to mediate the symptoms of obsessive–compulsive disorder (OCD), but structural neuroimaging studies have been inconsistent.AimsTo conduct a meta-analysis of published and unpublished voxel-based morphometry studies in OCD.MethodTwelve data-sets comprising 401 people with OCD and 376 healthy controls met inclusion criteria. A new improved voxel-based meta-analytic method, signed differential mapping (SDM), was developed to examine regions of increased and decreased grey matter volume in the OCD group v. control group.ResultsNo between-group differences were found in global grey matter volumes. People with OCD had increased regional grey matter volumes in bilateral lenticular nuclei, extending to the caudate nuclei, as well as decreased volumes in bilateral dorsal medial frontal/anterior cingulate gyri. A descriptive analysis of quartiles, a sensitivity analysis as well as analyses of subgroups further confirmed these findings. Meta-regression analyses showed that studies that included individuals with more severe OCD were significantly more likely to report increased grey matter volumes in the basal ganglia. No effect of current antidepressant treatment was observed.ConclusionsThe results support a dorsal prefrontal–striatal model of the disorder and raise the question of whether functional alterations in other brain regions commonly associated with OCD, such as the orbitofrontal cortex, may reflect secondary compensatory strategies. Whether the reported differences between participants with OCD and controls precede the onset of the symptoms and whether they are specific to OCD remains to be established.


Neuroscience ◽  
2009 ◽  
Vol 163 (4) ◽  
pp. 1102-1108 ◽  
Author(s):  
J. Peters ◽  
M. Dauvermann ◽  
C. Mette ◽  
P. Platen ◽  
J. Franke ◽  
...  

2020 ◽  
Vol 10 (6) ◽  
pp. 395
Author(s):  
Paola Feraco ◽  
Salvatore Nigro ◽  
Luca Passamonti ◽  
Alessandro Grecucci ◽  
Maria Eugenia Caligiuri ◽  
...  

(1) Background: Recently, a series of clinical neuroimaging studies on fibromyalgia (FM) have shown a reduction in cortical volume and abnormally high glutamate (Glu) and glutamate + glutamine (Glx) levels in regions associated with pain modulation. However, it remains unclear whether the volumetric decreases and increased Glu levels in FM are related each other. We hypothesized that higher Glu levels are related to decreases in cortical thickness (CT) and volume in FM patients. (2) Methods: Twelve females with FM and 12 matched healthy controls participated in a session of combined 3.0 Tesla structural magnetic resonance imaging (MRI) and single-voxel MR spectroscopy focused on the thalami and ventrolateral prefrontal cortices (VLPFC). The thickness of the cortical and subcortical gray matter structures and the Glu/Cr and Glx/Cr ratios were estimated. Statistics included an independent t-test and Spearman’s test. (3) Results: The Glu/Cr ratio of the left VLPFC was negatively related to the CT of the left inferior frontal gyrus (pars opercularis (p = 0.01; r = −0.75) and triangularis (p = 0.01; r = −0.70)). Moreover, the Glx/Cr ratio of the left VLPFC was negatively related to the CT of the left middle anterior cingulate gyrus (p = 0.003; r = −0.81). Significantly lower CTs in FM were detected in subparts of the cingulate gyrus on both sides and in the right inferior occipital gyrus (p < 0.001). (4) Conclusions: Our findings are in line with previous observations that high glutamate levels can be related, in a concentration-dependent manner, to the morphological atrophy described in FM patients.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Akila Weerasekera ◽  
Oron Levin ◽  
Amanda Clauwaert ◽  
Kirstin-Friederike Heise ◽  
Lize Hermans ◽  
...  

Abstract Suboptimal inhibitory control is a major factor contributing to motor/cognitive deficits in older age and pathology. Here, we provide novel insights into the neurochemical biomarkers of inhibitory control in healthy young and older adults and highlight putative neurometabolic correlates of deficient inhibitory functions in normal aging. Age-related alterations in levels of glutamate–glutamine complex (Glx), N-acetylaspartate (NAA), choline (Cho), and myo-inositol (mIns) were assessed in the right inferior frontal gyrus (RIFG), pre-supplementary motor area (preSMA), bilateral sensorimotor cortex (SM1), bilateral striatum (STR), and occipital cortex (OCC) with proton magnetic resonance spectroscopy (1H-MRS). Data were collected from 30 young (age range 18–34 years) and 29 older (age range 60–74 years) adults. Associations between age-related changes in the levels of these metabolites and performance measures or reactive/proactive inhibition were examined for each age group. Glx levels in the right striatum and preSMA were associated with more efficient proactive inhibition in young adults but were not predictive for reactive inhibition performance. Higher NAA/mIns ratios in the preSMA and RIFG and lower mIns levels in the OCC were associated with better deployment of proactive and reactive inhibition in older adults. Overall, these findings suggest that altered regional concentrations of NAA and mIns constitute potential biomarkers of suboptimal inhibitory control in aging.


2018 ◽  
Vol 49 (3) ◽  
pp. 412-420 ◽  
Author(s):  
Lena Palaniyappan ◽  
Olha Hodgson ◽  
Vijender Balain ◽  
Sarina Iwabuchi ◽  
Penny Gowland ◽  
...  

AbstractBackgroundIn patients with schizophrenia, distributed abnormalities are observed in grey matter volume. A recent hypothesis posits that these distributed changes are indicative of a plastic reorganisation process occurring in response to a functional defect in neuronal information transmission. We investigated the structural covariance across various brain regions in early-stage schizophrenia to determine if indeed the observed patterns of volumetric loss conform to a coordinated pattern of structural reorganisation.MethodsStructural magnetic resonance imaging scans were obtained from 40 healthy adults and 41 age, gender and parental socioeconomic status matched patients with schizophrenia. Volumes of grey matter tissue were estimated at the regional level across 90 atlas-based parcellations. Group-level structural covariance was studied using a graph theoretical framework.ResultsPatients had distributed reduction in grey matter volume, with high degree of localised covariance (clustering) compared with controls. Patients with schizophrenia had reduced centrality of anterior cingulate and insula but increased centrality of the fusiform cortex, compared with controls. Simulating targeted removal of highly central nodes resulted in significant loss of the overall covariance patterns in patients compared with controls.ConclusionRegional volumetric deficits in schizophrenia are not a result of random, mutually independent processes. Our observations support the occurrence of a spatially interconnected reorganisation with the systematic de-escalation of conventional ‘hub’ regions. This raises the question of whether the morphological architecture in schizophrenia is primed for compensatory functions, albeit with a high risk of inefficiency.


Sign in / Sign up

Export Citation Format

Share Document