scholarly journals Modifying TIMER, a slow-folding DsRed derivative, for optimal use in quickly-dividing bacteria

2021 ◽  
Author(s):  
Pavan Patel ◽  
Brendan J. O’Hara ◽  
Emily Aunins ◽  
Kimberly M. Davis

AbstractIt is now well appreciated that members of pathogenic bacterial populations exhibit heterogeneity in growth rates and metabolic activity, and it is known this can impact the ability to eliminate all members of the bacterial population during antibiotic treatment. It remains unclear which pathways promote slowed bacterial growth within host tissues, primarily because it has been difficult to identify and isolate slow growing bacteria from host tissues for downstream analyses. To overcome this limitation, we have developed a novel variant of TIMER, a slow-folding fluorescent protein, to identify subsets of slowly dividing bacteria within host tissues. The original TIMER folds too slowly for fluorescence accumulation in quickly replicating bacterial species (Escherichia coli, Yersinia pseudotuberculosis), however this TIMER42 variant accumulates signal in late stationary phase cultures of E. coli and Y. pseudotuberculosis. We show TIMER42 signal also accumulates during exposure to sources of nitric oxide (NO), suggesting TIMER42 signal detects growth-arrested bacterial cells. In a mouse model of Y. pseudotuberculosis deep tissue infection, TIMER42 signal is clearly detected, and primarily accumulates in bacteria expressing markers of stationary phase growth. There was not significant overlap between TIMER42 signal and NO-exposed subpopulations of bacteria within host tissues, suggesting NO stress was transient, allowing bacteria to recover from this stress and resume replication. This novel TIMER42 variant represents a new faster folding TIMER that will enable additional studies of slow-growing subpopulations of bacteria, specifically within bacterial species that quickly divide.Author SummaryWe have generated a variant of TIMER that can be used to mark slow-growing subsets of Yersinia pseudotuberculosis, which has a relatively short division time, similar to E. coli. We used a combination of site-directed and random mutagenesis to generate the TIMER42 variant, which has red fluorescent signal accumulation in post-exponential or stationary phase cells. We found that nitric oxide (NO) stress is sufficient to promote TIMER42 signal accumulation in culture, however within host tissues, TIMER42 signal correlates with a stationary phase reporter (dps). These results suggest NO may cause an immediate arrest in bacterial cell division, but during growth in host tissues exposure to NO is transient, allowing bacteria to recover from this stress and resume cell division. Thus instead of indicating a response to host stressors, TIMER42 signal accumulation within host tissues appears to identify slow-growing cells that are experiencing nutrient limitation.

2021 ◽  
Vol 17 (7) ◽  
pp. e1009284
Author(s):  
Pavan Patel ◽  
Brendan J. O’Hara ◽  
Emily Aunins ◽  
Kimberly M. Davis

It is now well appreciated that members of pathogenic bacterial populations exhibit heterogeneity in growth rates and metabolic activity, and it is known this can impact the ability to eliminate all members of the bacterial population during antibiotic treatment. It remains unclear which pathways promote slowed bacterial growth within host tissues, primarily because it has been difficult to identify and isolate slow growing bacteria from host tissues for downstream analyses. To overcome this limitation, we have developed a novel variant of TIMER, a slow-folding fluorescent protein, named DsRed42, to identify subsets of slowly dividing bacteria within host tissues. The original TIMER folds too slowly for fluorescence accumulation in quickly replicating bacterial species (Escherichia coli, Yersinia pseudotuberculosis), however DsRed42 accumulates red fluorescence in late stationary phase cultures of E. coli and Y. pseudotuberculosis. We show DsRed42 signal also accumulates during exposure to sources of nitric oxide (NO), suggesting DsRed42 signal detects growth-arrested bacterial cells. In a mouse model of Y. pseudotuberculosis deep tissue infection, DsRed42 signal was detected, and primarily accumulates in bacteria expressing markers of stationary phase growth. There was no significant overlap between DsRed42 signal and NO-exposed subpopulations of bacteria within host tissues, suggesting NO stress was transient, allowing bacteria to recover from this stress and resume replication. This novel DsRed42 variant represents a tool that will enable additional studies of slow-growing subpopulations of bacteria, specifically within bacterial species that quickly divide.


2021 ◽  
Author(s):  
Bessie Liu ◽  
Robert K Davidson ◽  
Kimberly Michele Davis

Fluorescence dilution approaches can detect bacterial cell division events, and can detect if there are differential rates of cell division across individual cells within a population. This approach typically involves inducing expression of a fluorescent protein, and then tracking partitioning of fluorescence into daughter cells. However, fluorescence can be diluted very quickly within a rapidly replicating population, such as pathogenic bacterial populations replicating within host tissues. To overcome this limitation, we have generated a revTetR reporter construct, where mCherry is constitutively expressed, and repressed by addition of tetracyclines, resulting in fluorescence dilution within defined timeframes. We show that mCherry signal is diluted in replicating populations, and that mCherry signal accumulates in growth-inhibited populations, including during exposure to inhibitory concentrations of antibiotics and during nitric oxide exposure. Furthermore, we show that tetracyclines can be delivered to the mouse spleen during Yersinia pseudotuberculosis infection. We defined a drug concentration that results in even exposure of cells to tetracyclines, and used this system to visualize cell division within defined timeframes post-inoculation. revTetR mCherry signal did not appear enriched in a particular spatial location within replicating centers of bacteria. However, the addition of a NO-sensing reporter (Phmp::gfp) showed that heightened NO exposure correlated with heightened mCherry signal, suggesting decreased cell division within this subpopulation. This revTetR reporter will provide a critical tool for future studies to identify and isolate slowly replicating bacterial subpopulations from host tissues.


2002 ◽  
Vol 184 (20) ◽  
pp. 5572-5582 ◽  
Author(s):  
Zhiyong Ding ◽  
Zhenming Zhao ◽  
Simon J. Jakubowski ◽  
Atmakuri Krishnamohan ◽  
William Margolin ◽  
...  

ABSTRACT DivIVA of Bacillus subtilis and FtsZ of Escherichia coli were used to target heterologous protein complexes to cell division sites of E. coli and Agrobacterium tumefaciens. DivIVA and FtsZ that were fused to the dimerizing leucine zipper (LZ) domain of the yeast transcription activator GCN4 directed the green fluorescent protein (GFP) that was fused to an LZ domain to E. coli division sites, resulting in fluorescence patterns identical to those observed with DivIVA::GFP and FtsZ::GFP. These cell division proteins also targeted the VirE1 chaperone and VirE2 secretion substrate complex to division sites of E. coli and A. tumefaciens. Coproduction of the native VirE1 or VirE2 proteins inhibited the dihybrid interaction in both species, as judged by loss of GFP targeting to division sites. The VirE1 chaperone bound independently to N- and C-terminal regions of VirE2, with a requirement for residues 84 to 147 and 331 to 405 for these interactions, as shown by dihybrid studies with VirE1::GFP and DivIVA fused to N- and C-terminal VirE2 fragments. DivIVA also targeted homo- and heterotypic complexes of VirB8 and VirB10, two bitopic inner membrane subunits of the A. tumefaciens T-DNA transfer system, in E. coli and homotypic complexes of VirB10 in A. tumefaciens. VirB10 self-association in bacteria was mediated by the C-terminal periplasmic domain, as shown by dihybrid studies with fusions to VirB10 truncation derivatives. Together, our findings establish a proof-of-concept for the use of cell-location-specific proteins for studies of interactions among cytosolic and membrane proteins in diverse bacterial species.


2008 ◽  
Vol 190 (18) ◽  
pp. 6048-6059 ◽  
Author(s):  
Carine Robichon ◽  
Glenn F. King ◽  
Nathan W. Goehring ◽  
Jon Beckwith

ABSTRACT Bacterial cell division is mediated by a set of proteins that assemble to form a large multiprotein complex called the divisome. Recent studies in Bacillus subtilis and Escherichia coli indicate that cell division proteins are involved in multiple cooperative binding interactions, thus presenting a technical challenge to the analysis of these interactions. We report here the use of an E. coli artificial septal targeting system for examining the interactions between the B. subtilis cell division proteins DivIB, FtsL, DivIC, and PBP 2B. This technique involves the fusion of one of the proteins (the “bait”) to ZapA, an E. coli protein targeted to mid-cell, and the fusion of a second potentially interacting partner (the “prey”) to green fluorescent protein (GFP). A positive interaction between two test proteins in E. coli leads to septal localization of the GFP fusion construct, which can be detected by fluorescence microscopy. Using this system, we present evidence for two sets of strong protein-protein interactions between B. subtilis divisomal proteins in E. coli, namely, DivIC with FtsL and DivIB with PBP 2B, that are independent of other B. subtilis cell division proteins and that do not disturb the cytokinesis process in the host cell. Our studies based on the coexpression of three or four of these B. subtilis cell division proteins suggest that interactions among these four proteins are not strong enough to allow the formation of a stable four-protein complex in E. coli in contrast to previous suggestions. Finally, our results demonstrate that E. coli artificial septal targeting is an efficient and alternative approach for detecting and characterizing stable protein-protein interactions within multiprotein complexes from other microorganisms. A salient feature of our approach is that it probably only detects the strongest interactions, thus giving an indication of whether some interactions suggested by other techniques may either be considerably weaker or due to false positives.


1997 ◽  
Vol 60 (8) ◽  
pp. 943-947 ◽  
Author(s):  
PASCAL J. DELAQUIS ◽  
PETER L. SHOLBERG

A simple model system was constructed to evaluate the microbistatic and microbicidal properties of gaseous allyl isothiocyanate (AIT) against bacterial cells and fungal conidia deposited on agar surfaces. Salmonella typhimurium, Listeria monocytogenes Scott A, and Escherichia coli O157:H7 were inhibited when exposed to 1,000 μg AIT per liter. Pseudomonas corrugata, a Cytophaga species, and a fluorescent pseudomonad failed to grow in the presence of 500 μg AIT per liter. Germination and growth of Penicillium expansum, Aspergillus flavus, and Botrytis cinerea conidia was inhibited in the presence of 100 μg AIT per liter. Bactericidal and sporicidal activities varied with strain and increased with time of exposure, AIT concentration, and temperature. E. coli O157:H7 was the most resistant bacterial species tested.


2019 ◽  
Vol 87 (9) ◽  
Author(s):  
Takeshi Shimizu ◽  
Akio Matsumoto ◽  
Masatoshi Noda

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) has at least three enzymes, NorV, Hmp, and Hcp, that act independently to lower the toxicity of nitric oxide (NO), a potent antimicrobial molecule. This study aimed to reveal the cooperative roles of these defensive enzymes in EHEC against nitrosative stress. Under anaerobic conditions, combined deletion of all three enzymes significantly increased the NO sensitivity of EHEC determined by the growth at late stationary phase; however, the expression of norV restored the NO resistance of EHEC. On the other hand, the growth of Δhmp mutant EHEC was inhibited after early stationary phase, indicating that NorV and Hmp play a cooperative role in anaerobic growth. Under microaerobic conditions, the growth of Δhmp mutant EHEC was inhibited by NO, indicating that Hmp is the enzyme that protects cells from NO stress under microaerobic conditions. When EHEC cells were exposed to a lower concentration of NO, the NO level in bacterial cells of Δhcp mutant EHEC was higher than those of the other EHEC mutants, suggesting that Hcp is effective at regulating NO levels only at a low concentration. These findings of a low level of NO in bacterial cells with hcp indicate that the NO consumption activity of Hcp was suppressed by Hmp at a low range of NO concentrations. Taken together, these results show that the cooperative effects of NO-metabolizing enzymes are regulated by the range of NO concentrations to which the EHEC cells are exposed.


2006 ◽  
Vol 188 (14) ◽  
pp. 5145-5152 ◽  
Author(s):  
Masaru Tamura ◽  
Kangseok Lee ◽  
Christine A. Miller ◽  
Christopher J. Moore ◽  
Yukio Shirako ◽  
...  

ABSTRACT Inactivation or deletion of the RNase E-encoding rne gene of Escherichia coli results in the growth of bacterial cells as filamentous chains in liquid culture (K. Goldblum and D. Apirion, J. Bacteriol. 146:128-132, 1981) and the loss of colony-forming ability (CFA) on solid media. RNase E dysfunction is also associated with abnormal processing of ftsQAZ transcripts (K. Cam, G. Rome, H. M. Krisch, and J.-P. Bouché, Nucleic Acids Res. 24:3065-3070, 1996), which encode proteins having a central role in septum formation during cell division. We show here that RNase E regulates the relative abundances of FtsZ and FtsA proteins and that RNase E depletion results in decreased FtsZ, increased FtsA, and consequently an altered FtsZ/FtsA ratio. However, while restoration of the level of FtsZ to normal in rne null mutant bacteria reverses the filamentation phenotype, it does not restore CFA. Conversely, overexpression of a related RNase, RNase G, in rne-deleted bacteria restores CFA, as previously reported, without affecting FtsZ abundance. Our results demonstrate that RNase E activity is required to maintain a proper cellular ratio of the FtsZ and FtsA proteins in E. coli but that FtsZ deficiency does not account for the nonviability of cells lacking RNase E.


Author(s):  
Sophia Katz ◽  
Sarit Avrani ◽  
Meitar Yavneh ◽  
Sabrin Hilau ◽  
Jonathan Gross ◽  
...  

AbstractMany bacterial species that cannot sporulate, such as the model bacterium Escherichia coli, can nevertheless survive for years under resource exhaustion, in a state termed long-term stationary phase (LTSP). Here we describe the dynamics of E. coli adaptation during the first three years spent under LTSP. We show that during this time E. coli continuously adapts genetically, through the accumulation of mutations. For non-mutator clones, the majority of mutations accumulated appear to be adaptive under LTSP, reflected in an extremely convergent pattern of mutation accumulation. Despite the rapid and convergent manner in which populations adapt under LTSP, they continue to harbor extensive genetic variation. The dynamics of evolution of mutation rates under LTSP are particularly interesting. The emergence of mutators, affects overall mutation accumulation rates as well as the mutational spectra and the ultimate spectrum of adaptive alleles acquired under LTSP. With time, mutators can evolve even higher mutation rates, through the acquisition of additional mutation-rate enhancing mutations. Different mutator and non-mutator clones within a single population and time point can display extreme variation in their mutation rates, resulting in differences in both the dynamics of adaptation and their associated deleterious burdens. Despite these differences, clones that vary greatly in their mutation rates tend to co-exist within their populations for many years, under LTSP.


2019 ◽  
Author(s):  
Xinxing Yang ◽  
Ryan McQuillen ◽  
Zhixin Lyu ◽  
Polly Phillips-Mason ◽  
Ana De La Cruz ◽  
...  

AbstractDuring bacterial cell division, synthesis of new septal peptidoglycan (sPG) is crucial for successful cytokinesis and cell pole morphogenesis. FtsW, a SEDS (Shape, Elongation, Division and Sporulation) family protein and an indispensable component of the cell division machinery in all walled bacterial species, was recently identified in vitro as a new monofunctional peptidoglycan glycosyltransferase (PGTase). FtsW and its cognate monofunctional transpeptidase (TPase) class B penicillin binding protein (PBP3 or FtsI in E. coli) may constitute the essential, bifunctional sPG synthase specific for new sPG synthesis. Despite its importance, the septal PGTase activity of FtsW has not been documented in vivo. How its activity is spatiotemporally regulated in vivo has also remained unknown. Here we investigated the septal PGTase activity and dynamics of FtsW in E. coli cells using a combination of single-molecule imaging and genetic manipulations. We show that FtsW exhibits robust activity to incorporate an N-acetylmuramic acid analog at septa in the absence of other known PGTases, confirming FtsW as the essential septum-specific PGTase in vivo. Notably, we identified two populations of processive moving FtsW molecules at septa. A fast-moving population is driven by the treadmilling dynamics of FtsZ and independent of sPG synthesis. A slow-moving population is driven by active sPG synthesis and independent of FtsZ’s treadmilling dynamics. We further identified that FtsN, a potential sPG synthesis activator, plays an important role in promoting the slow-moving, sPG synthesis-dependent population. Our results support a two-track model, in which inactive sPG synthase molecules follow the fast treadmilling “Z-track” to be distributed along the septum; FtsN promotes their release from the “Z-track” to become active in sPG synthesis on the slow “sPG-track”. This model explains how the spatial information is integrated into the regulation of sPG synthesis activity and suggests a new mechanistic framework for the spatiotemporal coordination of bacterial cell wall constriction.


2021 ◽  
pp. 14-20

Bacterial species such as E.coli, S. aureus and Sa. bongori were isolated from soil by using serial dilution. Bioremediation results showed the S. aureus was highly efficient on Diazinon removal by 62%, 63.2% and 68.6%, Pirimicarb removal was 44%, 52.4% and 53.8%, and Atrazine removal was 61%, 65.6% and 70.6%. and the efficiency of E.coli removal on Diazinon was 59%, 60.8% and 63.8%; on Pirimicarb was 44%, 52.4% and 53.8%; and for Atrazine 57%, 60.8% and 64.4%. Sa. bongori efficiency on Diazinon was 49%, 51.2% and 55.8%; on Pirimicarb removal was 61%, 63.2% and 68.4%; Also, in Atrazine removal 48%, 50.4% and 57.2%. When comparing the growth rate of bacterial cells. The bacterial cells before treatment with S. aureus was 22.01×10^4, Results after treatment showed Diazinon of 35.58×10^4. The Pirimicarb 32.41×10^4 and Atrazine was 38.45 ×10^4. Either E. coli Its bacterial growth was before treatment 17.09×10^4 To show the results of growth on diazinon 30.43×10^4, Pirimicarb 27.71×10^4 and Atrazine 24.34 ×10^4. While the growth was in Sa. bongori Before treatment 10.09×10^4 While recorded a growth rate on Diazinon 18.82×10^4, Pirimicarb 19.98×10^4 and Atrazine 17.08 ×10^4.These bacterial species efficiencies on bioremediation of these three pesticides proved to be promising It can be used safely in the process of removing pesticides, yet more research on safety, mechanisms and kinetics needs to be further investigated.


Sign in / Sign up

Export Citation Format

Share Document